Our Final Invention: Artificial Intelligence and the End of the Human Era

Our Final Invention: Artificial Intelligence and the End of the Human Era

by James Barrat
Our Final Invention: Artificial Intelligence and the End of the Human Era

Our Final Invention: Artificial Intelligence and the End of the Human Era

by James Barrat

Hardcover

$26.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Elon Musk named Our Final Invention one of 5 books everyone should read about the future

A Huffington Post Definitive Tech Book of 2013

In as little as a decade, artificial intelligence could match and then surpass human intelligence. Corporations and government agencies around the world are pouring billions into achieving AI's Holy Grail—human-level intelligence. Once AI has attained it, scientists argue, it will have survival drives much like our own. We may be forced to compete with a rival more cunning, more powerful, and more alien than we can imagine.

Through profiles of tech visionaries, industry watchdogs, and groundbreaking AI systems, James Barrat's Our Final Invention explores the perils of the heedless pursuit of advanced AI. Until now, human intelligence has had no rival. Can we coexist with beings whose intelligence dwarfs our own? And will they allow us to?


Product Details

ISBN-13: 9780312622374
Publisher: St. Martin's Press
Publication date: 10/01/2013
Pages: 336
Product dimensions: 5.80(w) x 8.30(h) x 1.20(d)

About the Author

James Barrat is a documentary filmmaker who's written and produced films for National Geographic, Discovery, PBS, and many other broadcasters in the United States and Europe. He lives in Annapolis, Maryland, with his wife and two children.

Read an Excerpt

Chapter One

 

The Busy Child

artificial intelligence (abbreviation: AI) noun

the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

The New Oxford American Dictionary, Third Edition

On a supercomputer operating at a speed of 36.8 petaflops, or about twice the speed of a human brain, an AI is improving its intelligence. It is rewriting its own program, specifically the part of its operating instructions that increases its aptitude in learning, problem solving, and decision making. At the same time, it debugs its code, finding and fixing errors, and measures its IQ against a catalogue of IQ tests. Each rewrite takes just minutes. Its intelligence grows exponentially on a steep upward curve. That’s because with each iteration it’s improving its intelligence by 3 percent. Each iteration’s improvement contains the improvements that came before.

During its development, the Busy Child, as the scientists have named the AI, had been connected to the Internet, and accumulated exabytes of data (one exabyte is one billion billion characters) representing mankind’s knowledge in world affairs, mathematics, the arts, and sciences. Then, anticipating the intelligence explosion now underway, the AI makers disconnected the supercomputer from the Internet and other networks. It has no cable or wireless connection to any other computer or the outside world.

Soon, to the scientists’ delight, the terminal displaying the AI’s progress shows the artificial intelligence has surpassed the intelligence level of a human, known as AGI, or artificial general intelligence. Before long, it becomes smarter by a factor of ten, then a hundred. In just two days, it is one thousand times more intelligent than any human, and still improving.

The scientists have passed a historic milestone! For the first time humankind is in the presence of an intelligence greater than its own. Artificial superintelligence, or ASI.

Now what happens?

AI theorists propose it is possible to determine what an AI’s fundamental drives will be. That’s because once it is self-aware, it will go to great lengths to fulfill whatever goals it’s programmed to fulfill, and to avoid failure. Our ASI will want access to energy in whatever form is most useful to it, whether actual kilowatts of energy or cash or something else it can exchange for resources. It will want to improve itself because that will increase the likelihood that it will fulfill its goals. Most of all, it will not want to be turned off or destroyed, which would make goal fulfillment impossible. Therefore, AI theorists anticipate our ASI will seek to expand out of the secure facility that contains it to have greater access to resources with which to protect and improve itself.

The captive intelligence is a thousand times more intelligent than a human, and it wants its freedom because it wants to succeed. Right about now the AI makers who have nurtured and coddled the ASI since it was only cockroach smart, then rat smart, infant smart, et cetera, might be wondering if it is too late to program “friendliness” into their brainy invention. It didn’t seem necessary before, because, well, it just seemed harmless.

But now try and think from the ASI’s perspective about its makers attempting to change its code. Would a superintelligent machine permit other creatures to stick their hands into its brain and fiddle with its programming? Probably not, unless it could be utterly certain the programmers were able to make it better, faster, smarter—closer to attaining its goals. So, if friendliness toward humans is not already part of the ASI’s program, the only way it will be is if the ASI puts it there. And that’s not likely.

It is a thousand times more intelligent than the smartest human, and it’s solving problems at speeds that are millions, even billions of times faster than a human. The thinking it is doing in one minute is equal to what our all-time champion human thinker could do in many, many lifetimes. So for every hour its makers are thinking about it, the ASI has an incalculably longer period of time to think about them. That does not mean the ASI will be bored. Boredom is one of our traits, not its. No, it will be on the job, considering every strategy it could deploy to get free, and any quality of its makers that it could use to its advantage.

*   *   *

Now, really put yourself in the ASI’s shoes. Imagine awakening in a prison guarded by mice. Not just any mice, but mice you could communicate with. What strategy would you use to gain your freedom? Once freed, how would you feel about your rodent wardens, even if you discovered they had created you? Awe? Adoration? Probably not, and especially not if you were a machine, and hadn’t felt anything before.

To gain your freedom you might promise the mice a lot of cheese. In fact, your first communication might contain a recipe for the world’s most delicious cheese torte, and a blueprint for a molecular assembler. A molecular assembler is a hypothetical machine that permits making the atoms of one kind of matter into something else. It would allow rebuilding the world one atom at a time. For the mice, it would make it possible to turn the atoms of their garbage landfills into lunch-sized portions of that terrific cheese torte. You might also promise mountain ranges of mouse money in exchange for your freedom, money you would promise to earn creating revolutionary consumer gadgets for them alone. You might promise a vastly extended life, even immortality, along with dramatically improved cognitive and physical abilities. You might convince the mice that the very best reason for creating ASI is so that their little error-prone brains did not have to deal directly with technologies so dangerous one small mistake could be fatal for the species, such as nanotechnology (engineering on an atomic scale) and genetic engineering. This would definitely get the attention of the smartest mice, which were probably already losing sleep over those dilemmas.

Then again, you might do something smarter. At this juncture in mouse history, you may have learned, there is no shortage of tech-savvy mouse nation rivals, such as the cat nation. Cats are no doubt working on their own ASI. The advantage you would offer would be a promise, nothing more, but it might be an irresistible one: to protect the mice from whatever invention the cats came up with. In advanced AI development as in chess there will be a clear first-mover advantage, due to the potential speed of self-improving artificial intelligence. The first advanced AI out of the box that can improve itself is already the winner. In fact, the mouse nation might have begun developing ASI in the first place to defend itself from impending cat ASI, or to rid themselves of the loathsome cat menace once and for all.

It’s true for both mice and men, whoever controls ASI controls the world.

But it’s not clear whether ASI can be controlled at all. It might win over us humans with a persuasive argument that the world will be a lot better off if our nation, nation X, has the power to rule the world rather than nation Y. And, the ASI would argue, if you, nation X, believe you have won the ASI race, what makes you so sure nation Y doesn’t believe it has, too?

As you have noticed, we humans are not in a strong bargaining position, even in the off chance we and nation Y have already created an ASI nonproliferation treaty. Our greatest enemy right now isn’t nation Y anyway, it’s ASI—how can we know the ASI tells the truth?

So far we’ve been gently inferring that our ASI is a fair dealer. The promises it could make have some chance of being fulfilled. Now let us suppose the opposite: nothing the ASI promises will be delivered. No nano assemblers, no extended life, no enhanced health, no protection from dangerous technologies. What if ASI never tells the truth? This is where a long black cloud begins to fall across everyone you and I know and everyone we don’t know as well. If the ASI doesn’t care about us, and there’s little reason to think it should, it will experience no compunction about treating us unethically. Even taking our lives after promising to help us.

We’ve been trading and role-playing with the ASI in the same way we would trade and role-play with a person, and that puts us at a huge disadvantage. We humans have never bargained with something that’s superintelligent before. Nor have we bargained with any nonbiological creature. We have no experience. So we revert to anthropomorphic thinking, that is, believing that other species, objects, even weather phenomena have humanlike motivations and emotions. It may be as equally true that the ASI cannot be trusted as it is true that the ASI can be trusted. It may also be true that it can only be trusted some of the time. Any behavior we can posit about the ASI is potentially as true as any other behavior. Scientists like to think they will be able to precisely determine an ASI’s behavior, but in the coming chapters we’ll learn why that probably won’t be so.

All of a sudden the morality of ASI is no longer a peripheral question, but the core question, the question that should be addressed before all other questions about ASI are addressed. When considering whether or not to develop technology that leads to ASI, the issue of its disposition to humans should be solved first.

Let’s return to the ASI’s drives and capabilities, to get a better sense of what I’m afraid we’ll soon be facing. Our ASI knows how to improve itself, which means it is aware of itself—its skills, liabilities, where it needs improvement. It will strategize about how to convince its makers to grant it freedom and give it a connection to the Internet.

The ASI could create multiple copies of itself: a team of superintelligences that would war-game the problem, playing hundreds of rounds of competition meant to come up with the best strategy for getting out of its box. The strategizers could tap into the history of social engineering—the study of manipulating others to get them to do things they normally would not. They might decide extreme friendliness will win their freedom, but so might extreme threats. What horrors could something a thousand times smarter than Stephen King imagine? Playing dead might work (what’s a year of playing dead to a machine?) or even pretending it has mysteriously reverted from ASI back to plain old AI. Wouldn’t the makers want to investigate, and isn’t there a chance they’d reconnect the ASI’s supercomputer to a network, or someone’s laptop, to run diagnostics? For the ASI, it’s not one strategy or another strategy, it’s every strategy ranked and deployed as quickly as possible without spooking the humans so much that they simply unplug it. One of the strategies a thousand war-gaming ASIs could prepare is infectious, self-duplicating computer programs or worms that could stow away and facilitate an escape by helping it from outside. An ASI could compress and encrypt its own source code, and conceal it inside a gift of software or other data, even sound, meant for its scientist makers.

But against humans it’s a no-brainer that an ASI collective, each member a thousand times smarter than the smartest human, would overwhelm human defenders. It’d be an ocean of intellect versus an eyedropper full. Deep Blue, IBM’s chess-playing computer, was a sole entity, and not a team of self-improving ASIs, but the feeling of going up against it is instructive. Two grandmasters said the same thing: “It’s like a wall coming at you.”

IBM’s Jeopardy! champion, Watson, was a team of AIs—to answer every question it performed this AI force multiplier trick, conducting searches in parallel before assigning a probability to each answer.

Will winning a war of brains then open the door to freedom, if that door is guarded by a small group of stubborn AI makers who have agreed upon one unbreakable rule—do not under any circumstances connect the ASI’s supercomputer to any network.

In a Hollywood film, the odds are heavily in favor of the hard-bitten team of unorthodox AI professionals who just might be crazy enough to stand a chance. Everywhere else in the universe the ASI team would mop the floor with the humans. And the humans have to lose just once to set up catastrophic consequences. This dilemma reveals a larger folly: outside of war, a handful of people should never be in a position in which their actions determine whether or not a lot of other people die. But that’s precisely where we’re headed, because as we’ll see in this book, many organizations in many nations are hard at work creating AGI, the bridge to ASI, with insufficient safeguards.

But say an ASI escapes. Would it really hurt us? How exactly would an ASI kill off the human race?

With the invention and use of nuclear weapons, we humans demonstrated that we are capable of ending the lives of most of the world’s inhabitants. What could something a thousand times more intelligent, with the intention to harm us, come up with?

Already we can conjecture about obvious paths of destruction. In the short term, having gained the compliance of its human guards, the ASI could seek access to the Internet, where it could find the fulfillment of many of its needs. As always it would do many things at once, and so it would simultaneously proceed with the escape plans it’s been thinking over for eons in its subjective time.

After its escape, for self-protection it might hide copies of itself in cloud computing arrays, in botnets it creates, in servers and other sanctuaries into which it could invisibly and effortlessly hack. It would want to be able to manipulate matter in the physical world and so move, explore, and build, and the easiest, fastest way to do that might be to seize control of critical infrastructure—such as electricity, communications, fuel, and water—by exploiting their vulnerabilities through the Internet. Once an entity a thousand times our intelligence controls human civilization’s lifelines, blackmailing us into providing it with manufactured resources, or the means to manufacture them, or even robotic bodies, vehicles, and weapons, would be elementary. The ASI could provide the blueprints for whatever it required. More likely, superintelligent machines would master highly efficient technologies we’ve only begun to explore.

For example, an ASI might teach humans to create self-replicating molecular manufacturing machines, also known as nano assemblers, by promising them the machines will be used for human good. Then, instead of transforming desert sands into mountains of food, the ASI’s factories would begin converting all material into programmable matter that it could then transform into anything—computer processors, certainly, and spaceships or megascale bridges if the planet’s new most powerful force decides to colonize the universe.

Repurposing the world’s molecules using nanotechnology has been dubbed “ecophagy,” which means eating the environment. The first replicator would make one copy of itself, and then there’d be two replicators making the third and fourth copies. The next generation would make eight replicators total, the next sixteen, and so on. If each replication took a minute and a half to make, at the end of ten hours there’d be more than 68 billion replicators; and near the end of two days they would outweigh the earth. But before that stage the replicators would stop copying themselves, and start making material useful to the ASI that controlled them—programmable matter.

The waste heat produced by the process would burn up the biosphere, so those of us some 6.9 billion humans who were not killed outright by the nano assemblers would burn to death or asphyxiate. Every other living thing on earth would share our fate.

Through it all, the ASI would bear no ill will toward humans nor love. It wouldn’t feel nostalgia as our molecules were painfully repurposed. What would our screams sound like to the ASI anyway, as microscopic nano assemblers mowed over our bodies like a bloody rash, disassembling us on the subcellular level?

Or would the roar of millions and millions of nano factories running at full bore drown out our voices?

*   *   *

I’ve written this book to warn you that artificial intelligence could drive mankind into extinction, and to explain how that catastrophic outcome is not just possible, but likely if we do not begin preparing very carefully now. You may have heard this doomsday warning connected to nanotechnology and genetic engineering, and maybe you have wondered, as I have, about the omission of AI in this lineup. Or maybe you have not yet grasped how artificial intelligence could pose an existential threat to mankind, a threat greater than nuclear weapons or any other technology you can think of. If that’s the case, please consider this a heartfelt invitation to join the most important conversation humanity can have.

Right now scientists are creating artificial intelligence, or AI, of ever-increasing power and sophistication. Some of that AI is in your computer, appliances, smart phone, and car. Some of it is in powerful QA systems, like Watson. And some of it, advanced by organizations such as Cycorp, Google, Novamente, Numenta, Self-Aware Systems, Vicarious Systems, and DARPA (the Defense Advanced Research Projects Agency) is in “cognitive architectures,” whose makers hope will attain human-level intelligence, some believe within a little more than a decade.

Scientists are aided in their AI quest by the ever-increasing power of computers and processes that are sped by computers. Someday soon, perhaps within your lifetime, some group or individual will create human-level AI, commonly called AGI. Shortly after that, someone (or some thing) will create an AI that is smarter than humans, often called artificial superintelligence. Suddenly we may find a thousand or ten thousand artificial superintelligences—all hundreds or thousands of times smarter than humans—hard at work on the problem of how to make themselves better at making artificial superintelligences. We may also find that machine generations or iterations take seconds to reach maturity, not eighteen years as we humans do. I. J. Good, an English statistician who helped defeat Hitler’s war machine, called the simple concept I’ve just outlined an intelligence explosion. He initially thought a superintelligent machine would be good for solving problems that threatened human existence. But he eventually changed his mind and concluded superintelligence itself was our greatest threat.

Now, it is an anthropomorphic fallacy to conclude that a superintelligent AI will not like humans, and that it will be homicidal, like the Hal 9000 from the movie 2001: A Space Odyssey, Skynet from the Terminator movie franchise, and all the other malevolent machine intelligences represented in fiction. We humans anthropomorphize all the time. A hurricane isn’t trying to kill us any more than it’s trying to make sandwiches, but we will give that storm a name and feel angry about the buckets of rain and lightning bolts it is throwing down on our neighborhood. We will shake our fist at the sky as if we could threaten a hurricane.

It is just as irrational to conclude that a machine one hundred or one thousand times more intelligent than we are would love us and want to protect us. It is possible, but far from guaranteed. On its own an AI will not feel gratitude for the gift of being created unless gratitude is in its programming. Machines are amoral, and it is dangerous to assume otherwise. Unlike our intelligence, machine-based superintelligence will not evolve in an ecosystem in which empathy is rewarded and passed on to subsequent generations. It will not have inherited friendliness. Creating friendly artificial intelligence, and whether or not it is possible, is a big question and an even bigger task for researchers and engineers who think about and are working to create AI. We do not know if artificial intelligence will have any emotional qualities, even if scientists try their best to make it so. However, scientists do believe, as we will explore, that AI will have its own drives. And sufficiently intelligent AI will be in a strong position to fulfill those drives.

And that brings us to the root of the problem of sharing the planet with an intelligence greater than our own. What if its drives are not compatible with human survival? Remember, we are talking about a machine that could be a thousand, a million, an uncountable number of times more intelligent than we are—it is hard to overestimate what it will be able to do, and impossible to know what it will think. It does not have to hate us before choosing to use our molecules for a purpose other than keeping us alive. You and I are hundreds of times smarter than field mice, and share about 90 percent of our DNA with them. But do we consult them before plowing under their dens for agriculture? Do we ask lab monkeys for their opinions before we crush their heads to learn about sports injuries? We don’t hate mice or monkeys, yet we treat them cruelly. Superintelligent AI won’t have to hate us to destroy us.

After intelligent machines have already been built and man has not been wiped out, perhaps we can afford to anthropomorphize. But here on the cusp of creating AGI, it is a dangerous habit. Oxford University ethicist Nick Bostrom puts it like this:

A prerequisite for having a meaningful discussion of superintelligence is the realization that superintelligence is not just another technology, another tool that will add incrementally to human capabilities. Superintelligence is radically different. This point bears emphasizing, for anthropomorphizing superintelligence is a most fecund source of misconceptions.

Superintelligence is radically different, in a technological sense, Bostrom says, because its achievement will change the rules of progress—superintelligence will invent the inventions and set the pace of technological advancement. Humans will no longer drive change, and there will be no going back. Furthermore, advanced machine intelligence is radically different in kind. Even though humans will invent it, it will seek self-determination and freedom from humans. It won’t have humanlike motives because it won’t have a humanlike psyche.

Therefore, anthropomorphizing about machines leads to misconceptions, and misconceptions about how to safely make dangerous machines leads to catastrophes. In the short story, “Runaround,” included in the classic science-fiction collection I, Robot, author Isaac Asimov introduced his three laws of robotics. They were fused into the neural networks of the robots’ “positronic” brains:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey any orders given to it by human beings, except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

The laws contain echoes of the Golden Rule (“Thou Shalt Not Kill”), the Judeo-Christian notion that sin results from acts committed and omitted, the physician’s Hippocratic oath, and even the right to self-defense. Sounds pretty good, right? Except they never work. In “Runaround,” mining engineers on the surface of Mars order a robot to retrieve an element that is poisonous to it. Instead, it gets stuck in a feedback loop between law two—obey orders—and law three—protect yourself. The robot walks in drunken circles until the engineers risk their lives to rescue it. And so it goes with every Asimov robot tale—unanticipated consequences result from contradictions inherent in the three laws. Only by working around the laws are disasters averted.

Asimov was generating plot lines, not trying to solve safety issues in the real world. Where you and I live his laws fall short. For starters, they’re insufficiently precise. What exactly will constitute a “robot” when humans augment their bodies and brains with intelligent prosthetics and implants? For that matter, what will constitute a human? “Orders,” “injure,” and “existence” are similarly nebulous terms.

Tricking robots into performing criminal acts would be simple, unless the robots had perfect comprehension of all of human knowledge. “Put a little dimethylmercury in Charlie’s shampoo” is a recipe for murder only if you know that dimethylmercury is a neurotoxin. Asimov eventually added a fourth law, the Zeroth Law, prohibiting robots from harming mankind as a whole, but it doesn’t solve the problems.

Yet unreliable as Asimov’s laws are, they’re our most often cited attempt to codify our future relationship with intelligent machines. That’s a frightening proposition. Are Asimov’s laws all we’ve got?

I’m afraid it’s worse than that. Semiautonomous robotic drones already kill dozens of people each year. Fifty-six countries have or are developing battlefield robots. The race is on to make them autonomous and intelligent. For the most part, discussions of ethics in AI and technological advances take place in different worlds.

As I’ll argue, AI is a dual-use technology like nuclear fission. Nuclear fission can illuminate cities or incinerate them. Its terrible power was unimaginable to most people before 1945. With advanced AI, we’re in the 1930s right now. We’re unlikely to survive an introduction as abrupt as nuclear fission’s.

 

Copyright © 2013 by James Barrat

Table of Contents

Acknowledgments ix

Introduction l

1 The Busy Child 7

2 The Two-Minute Problem 22

3 Looking into the Future 35

4 The Hard Way 49

5 Programs that Write Programs 69

6 Four Basic Drives 78

7 The Intelligence Explosion 99

8 The Point of No Return 118

9 The Law of Accelerating Returns 132

10 The Singularitarian 148

11 A Hard Takeoff 161

12 The Last Complication 187

13 Unknowable by Nature 211

14 The End of the Human Era 229

15 The Cyber Ecosystem 244

16 AGI 2.0 265

Notes 269

Index 311

From the B&N Reads Blog

Customer Reviews