Panoramic Imaging: Sensor-Line Cameras and Laser Range-Finders / Edition 1

Panoramic Imaging: Sensor-Line Cameras and Laser Range-Finders / Edition 1

by Fay Huang, Reinhard Klette, Karsten Scheibe
     
 

Panoramic imaging is a progressive application and research area. This technology has applications in digital photography, robotics, film productions for panoramic screens, architecture, environmental studies, remote sensing and GIS technology. Applications demand different levels of accuracy for 3D documentation or visualizations.

This book describes two modern

See more details below

Overview

Panoramic imaging is a progressive application and research area. This technology has applications in digital photography, robotics, film productions for panoramic screens, architecture, environmental studies, remote sensing and GIS technology. Applications demand different levels of accuracy for 3D documentation or visualizations.

This book describes two modern technologies for capturing high-accuracy panoramic images and range data, namely the use of sensor-line cameras and laser range-finders. It provides mathematically accurate descriptions of the geometry of these sensing technologies and the necessary information required to apply them to 3D scene visualization or 3D representation. The book is divided into three parts:

  • Part One contains a full introduction to panoramic cameras and laser range-finders, including a discussion of calibration to aid preparation of equipment ready for use.
  • Part Two explains the concept of stereo panoramic imaging, looking at epipolar geometry, spatial sampling, image quality control and camera analysis and design.
  • Part Three looks at surface modelling and rendering based on panoramic input data, starting with the basics and taking the reader through to more advanced techniques such as the optimization of surface meshes and data fusion.
  • There is also an accompanying website containing high-resolution visual samples and animations which illustrate techniques discussed in the text.

    Panoramic Imaging is primarily aimed at researchers and students in engineering or computer science involved in using imaging technologies for 3D visualization or 3D scene reconstruction. It is also of significant use as an advanced manual to practising engineers in panoramic imaging. In brief, the book is of value to all those interested in current developments in multimedia imaging technology.

    Read More

  • Product Details

    ISBN-13:
    9780470060650
    Publisher:
    Wiley
    Publication date:
    11/25/2008
    Series:
    Wiley-IS&T Series in Imaging Science and Technology Series, #14
    Pages:
    284
    Product dimensions:
    6.70(w) x 9.80(h) x 0.90(d)

    Table of Contents

    Preface.

    Series Preface.

    Website and Exercises.

    List of Symbols.

    1. Introduction.

    1.1 Panoramas

    1.2 Panoramic Paintings

    1.3 Panoramic or Wide-Angle Photographs

    1.4 Digital Panoramas

    1.5 Striving for Accuracy

    1.6 Exercises

    1.7 Further Reading

    2. Cameras and Sensors.

    2.1 Camera Models

    2.2 Optics

    2.3 Sensor Models

    2.4 Examples and Challenges

    2.5 Exercises

    2.6 Further Reading

    3. Spatial Alignments.

    3.1 Mathematical Fundamentals

    3.2 Central Projection:World into Image Plane

    3.3 Classification of Panoramas

    3.4 Coordinate Systems for Panoramas

    3.5 General Projection Formula for Cylindrical Panorama

    3.6 Rotating Cameras

    3.7 Mappings between Different Image Surfaces

    3.8 Laser Range-Finder

    3.9 Exercises

    3.10 Further Reading

    4. Epipolar Geometry.

    4.1 General Epipolar Curve Equation

    4.2 Constrained Poses of Cameras

    4.3 Exercises

    4.4 Further Reading

    5. Sensor Calibration.

    5.1 Basics

    5.2 Preprocesses for a Rotating Sensor-Line Camera

    5.3 A Least-Square Error Optimization Calibration Procedure

    5.4 Geometric Dependencies of R and w

    5.5 Error Components in LRF Data

    5.6 Exercises

    5.7 Further Reading

    6. Spatial Sampling.

    6.1 Stereo Panoramas

    6.2 Sampling Structure

    6.3 Spatial Resolution

    6.4 Distances between Spatial Samples

    6.5 Exercises

    6.6 Further Reading

    7. Image Quality Control.

    7.1 Two Requirements

    7.2 Terminology

    7.3 Parameter Optimization

    7.4 Error Analysis

    7.5 Exercises

    7.6 Further Reading

    8. Sensor Analysis and Design.

    8.1 Introduction

    8.2 Scene Composition Analysis

    8.3 Stereoacuity Analysis

    8.4 Specification of Camera Parameters

    8.5 Exercises

    8.6 Further Reading

    9. 3D Meshing and Visualization.

    9.1 3D Graphics

    9.2 Surface Modeling

    9.3 More Techniques for Dealing with Digital Surfaces

    9.4 Exercises

    9.5 Further Reading

    10. Data Fusion.

    10.1 Determination of Camera Image Coordinates

    10.2 Texture Mapping

    10.3 High Resolution Orthophotos

    10.4 Fusion of Panoramic Images and Airborne Data

    10.5 Exercises

    10.6 Further Reading

    References.

    Index.

    Read More

    Customer Reviews

    Average Review:

    Write a Review

    and post it to your social network

         

    Most Helpful Customer Reviews

    See all customer reviews >