BN.com Gift Guide

Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers

Overview

This accessible text covers the techniques of parallel programming in a practical manner that enables readers to write and evaluate their parallel programs. Supported by the National Science Foundation and exhaustively class-tested, it is the first text of its kind that does not require access to a special multiprocessor system, concentrating instead on parallel programs that can be executed on networked computers using freely available parallel software tools. The book covers the timely topic of cluster ...
See more details below
Available through our Marketplace sellers.
Other sellers (Paperback)
  • All (11) from $1.99   
  • New (2) from $37.00   
  • Used (9) from $1.99   
Close
Sort by
Page 1 of 1
Showing 1 – 1 of 2
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$37.00
Seller since 2014

Feedback rating:

(320)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Brand New Item.

Ships from: Chatham, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing 1 – 1 of 2
Close
Sort by
Sending request ...

Overview

This accessible text covers the techniques of parallel programming in a practical manner that enables readers to write and evaluate their parallel programs. Supported by the National Science Foundation and exhaustively class-tested, it is the first text of its kind that does not require access to a special multiprocessor system, concentrating instead on parallel programs that can be executed on networked computers using freely available parallel software tools. The book covers the timely topic of cluster programming, interesting to many programmers due to the recent availability of low-cost computers. Uses MPI pseudocodes to describe algorithms and allows different programming tools to be implemented, and provides readers with thorough coverage of shared memory programming, including Pthreads and OpenMP. Useful as a professional reference for programmers and system administrators.

Read More Show Less

Editorial Reviews

Booknews
Covers the techniques of parallel programming in a practical manner that enables students to write and evaluate their parallel programs. The authors introduce parallel programming techniques as a natural extension to sequential programming, develop the basic techniques of message-passing parallel programming, and address problem-specific algorithms in both non-numeric and numeric domains. Also covers shared memory, Pthreads, image processing, searching, and optimization. Requires no prerequisites in parallel programming, as it assumes only C programming knowledge. Intended for undergraduate computer science students and CS professionals. Annotation c. by Book News, Inc., Portland, Or.
Read More Show Less

Product Details

  • ISBN-13: 9780136717102
  • Publisher: Prentice Hall Professional Technical Reference
  • Publication date: 8/12/1998
  • Edition description: Older Edition
  • Edition number: 1
  • Pages: 431
  • Product dimensions: 7.05 (w) x 9.24 (h) x 0.83 (d)

Read an Excerpt

PREFACE: Preface

The purpose of this text is to introduce parallel programming techniques. Parallel program-ming uses multiple computers, or computers with multiple internal processors, to solve a problem at a greater computational speed than using a single computer. It also offers the opportunity to tackle larger problems; that is, problems with more computational steps or more memory requirements, the latter because multiple computers and multiprocessor systems often have more total memory than a single computer. In this text, we concentrate upon the use of multiple computers that communicate between themselves by sending messages; hence the term message-passing parallel programming. The computers we use can be different types (PC, SUN, SGI, etc.) but must be interconnected by a network, and a software environment must be present for intercomputer message passing. Suitable networked computers are very widely available as the basic computing platform for students so that acquisition of specially designed multiprocessor systems can usually be avoided. Several software tools are available for message-passing parallel programming, including PVM and several implementations of MPI, which are all freely available. Such software can also be used on specially designed multiprocessor systems should these systems be available for use. So far as practicable, we discuss techniques and applications in a system-independent fashion.

The text is divided into two parts, Part I and Part II. In Part I, the basic techniques of parallel programming are developed. The chapters of Part I cover all the essential aspects, using simple problems to demonstrate techniques. Thetechniques themselves, however, can be applied to a wide range of problems. Sample code is given usually first as sequential code and then as realistic parallel pseudocode. Often, the underlying algorithm is already parallel in nature and the sequential version has "unnaturally" serialized it using loops. Of course, some algorithms have to be reformulated for efficient parallel solution, and this reformulation may not be immediately apparent. One chapter in Part I introduces a type of parallel programming not centered around message-passing multicomputers, but around specially designed shared memory multiprocessor systems. This chapter describes the use of Pthreads, an IEEE multiprocessor standard system that is widely available and can be used on a single computer.

The prerequisites for studying Part I are knowledge of sequential programming, such as from using the C language and associated data structures. Part I can be studied immediately after basic sequential programming has been mastered. Many assignments here can be attempted without specialized mathematical knowledge. If MPI or PVM is used for the assignments, programs are written in C with message-passing library calls. The descriptions of the specific library calls needed are given in the appendices.

Many parallel computing problems have specially developed algorithms, and in Part II problem-specific algorithms are studied in both non-numeric and numeric domains. For Part II, some mathematical concepts are needed such as matrices. Topics covered in Part II include sorting, matrix multiplication, linear equations, partial differential equations, image processing, and searching and optimization. Image processing is particularly suitable for parallelization and is included as an interesting application with significant potential for projects. The fast Fourier transform is discussed in the context of image processing. This important transform is also used in many other areas, including signal processing and voice recognition.

A large selection of "real-life" problems drawn from practical situations is presented at the end of each chapter. These problems require no specialized mathematical knowledge and are a unique aspect of this text. They develop skills in using parallel programming techniques rather than simply learning to solve specific problems such as sorting numbers or multiplying matrices.

Topics in Part I are suitable as additions to normal sequential programming classes. At the University of North Carolina at Charlotte (UNCC), we introduce our freshmen students to parallel programming in this way. In that context, the text is a supplement to a sequential programming course text. The sequential programming language is assumed to be C or C++. Part I and Part II together is suitable as a more advanced undergraduate parallel programming/computing course, and at UNCC we use the text in that manner.

Full details of the UNCC environment and site-specific details can be found at
...
Read More Show Less

Table of Contents

Preface
About the Authors
Pt. I Basic Techniques 1
Ch. 1 Parallel Computers 3
Ch. 2 Message-Passing Computing 42
Ch. 3 Embarrassingly Parallel Computations 79
Ch. 4 Partitioning and Divide-and-Conquer Strategies 106
Ch. 5 Pipelined Computations 140
Ch. 6 Synchronous Computations 163
Ch. 7 Load Balancing and Termination Detection 201
Ch. 8 Programming with Shared Memory 230
Ch. 9 Distributed Shared Memory Systems and Programming 279
Pt. II Algorithms and Applications 301
Ch. 10 Sorting Algorithms 303
Ch. 11 Numerical Algorithms 340
Ch. 12 Image Processing 370
Ch. 13 Searching and Optimization 406
App. A Basic MPI Routines 437
App. B Basic Pthread Routines 444
App. C OpenMP Directives, Library Functions, and Environment Variables 449
Index 460
Read More Show Less

Preface

PREFACE: Preface

The purpose of this text is to introduce parallel programming techniques. Parallel program-ming uses multiple computers, or computers with multiple internal processors, to solve a problem at a greater computational speed than using a single computer. It also offers the opportunity to tackle larger problems; that is, problems with more computational steps or more memory requirements, the latter because multiple computers and multiprocessor systems often have more total memory than a single computer. In this text, we concentrate upon the use of multiple computers that communicate between themselves by sending messages; hence the term message-passing parallel programming. The computers we use can be different types (PC, SUN, SGI, etc.) but must be interconnected by a network, and a software environment must be present for intercomputer message passing. Suitable networked computers are very widely available as the basic computing platform for students so that acquisition of specially designed multiprocessor systems can usually be avoided. Several software tools are available for message-passing parallel programming, including PVM and several implementations of MPI, which are all freely available. Such software can also be used on specially designed multiprocessor systems should these systems be available for use. So far as practicable, we discuss techniques and applications in a system-independent fashion.

The text is divided into two parts, Part I and Part II. In Part I, the basic techniques of parallel programming are developed. The chapters of Part I cover all the essential aspects, using simple problems to demonstrate techniques.Thetechniques themselves, however, can be applied to a wide range of problems. Sample code is given usually first as sequential code and then as realistic parallel pseudocode. Often, the underlying algorithm is already parallel in nature and the sequential version has "unnaturally" serialized it using loops. Of course, some algorithms have to be reformulated for efficient parallel solution, and this reformulation may not be immediately apparent. One chapter in Part I introduces a type of parallel programming not centered around message-passing multicomputers, but around specially designed shared memory multiprocessor systems. This chapter describes the use of Pthreads, an IEEE multiprocessor standard system that is widely available and can be used on a single computer.

The prerequisites for studying Part I are knowledge of sequential programming, such as from using the C language and associated data structures. Part I can be studied immediately after basic sequential programming has been mastered. Many assignments here can be attempted without specialized mathematical knowledge. If MPI or PVM is used for the assignments, programs are written in C with message-passing library calls. The descriptions of the specific library calls needed are given in the appendices.

Many parallel computing problems have specially developed algorithms, and in Part II problem-specific algorithms are studied in both non-numeric and numeric domains. For Part II, some mathematical concepts are needed such as matrices. Topics covered in Part II include sorting, matrix multiplication, linear equations, partial differential equations, image processing, and searching and optimization. Image processing is particularly suitable for parallelization and is included as an interesting application with significant potential for projects. The fast Fourier transform is discussed in the context of image processing. This important transform is also used in many other areas, including signal processing and voice recognition.

A large selection of "real-life" problems drawn from practical situations is presented at the end of each chapter. These problems require no specialized mathematical knowledge and are a unique aspect of this text. They develop skills in using parallel programming techniques rather than simply learning to solve specific problems such as sorting numbers or multiplying matrices.

Topics in Part I are suitable as additions to normal sequential programming classes. At the University of North Carolina at Charlotte (UNCC), we introduce our freshmen students to parallel programming in this way. In that context, the text is a supplement to a sequential programming course text. The sequential programming language is assumed to be C or C++. Part I and Part II together is suitable as a more advanced undergraduate parallel programming/computing course, and at UNCC we use the text in that manner.

Full details of the UNCC environment and site-specific details can be found at
...
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted August 22, 2000

    Easy to read, clear & to the point

    This was a suprisingly easy read and clear introduction to the complex topic of parallel programming. The sample code was not long or complicated and conveyed the concepts well. To actually run the sample code however, the hardest part for a reader would be in setting up a computer to run the free code referrenced in the book (but learning how to use resources like this is a good exercise anyhow). Once set up, the book does a good job of filling in the rest for a fairly short but through introduction to Parallel Prog.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)