Patterns for Parallel Programming(Software Patterns Series) / Edition 1

Hardcover (Print)
Rent
Rent from BN.com
$26.97
(Save 59%)
Est. Return Date: 12/20/2014
Buy Used
Buy Used from BN.com
$38.23
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $37.31
Usually ships in 1-2 business days
(Save 42%)
Other sellers (Hardcover)
  • All (7) from $37.31   
  • Used (7) from $37.31   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$37.31
Seller since 2009

Feedback rating:

(7292)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Good
Book shows a small amount of wear to cover and binding. Some pages show signs of use. Sail the Seas of Value

Ships from: Windsor Locks, CT

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$37.31
Seller since 2007

Feedback rating:

(10002)

Condition: Like New
Almost in new condition. Book shows only very slight signs of use. Cover and binding are undamaged and pages show minimal use . Millions of satisfied customers and climbing. ... Thriftbooks is the name you can trust, guaranteed. Spend Less. Read More. Read more Show Less

Ships from: Auburn, WA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$37.61
Seller since 2009

Feedback rating:

(3448)

Condition: Good
Ships same day or next business day! UPS expedited shipping available (Priority Mail for AK/HI/APO/PO Boxes). Used sticker & some writing and/or highlighting. Used books may not ... include working access code or dust jacket Read more Show Less

Ships from: Columbia, MO

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$48.74
Seller since 2005

Feedback rating:

(49443)

Condition: Very Good
Ships same day or next business day via UPS (Priority Mail for AK/HI/APO/PO Boxes)! Used sticker and some writing and/or highlighting. Used books may not include working access ... code or dust jacket. Read more Show Less

Ships from: Columbia, MO

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$50.54
Seller since 2008

Feedback rating:

(2313)

Condition: Very Good
0321228111 Item in very good condition and at a great price! Textbooks may not include supplemental items i.e. CDs, access codes etc... All day low prices, buy from us sell to us ... we do it all!! Read more Show Less

Ships from: Aurora, IL

Usually ships in 1-2 business days

  • Canadian
  • Standard, 48 States
  • Express, 48 States
$62.00
Seller since 2005

Feedback rating:

(528)

Condition: Very Good
2005 Hardcover Very Good Hard cover in pictorial boards. Previous owner name on first page. Otherwise, ? Clean text--NO writing, NO highlighting to text. ? Very Good condition.

Ships from: seattle, WA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$135.99
Seller since 2014

Feedback rating:

(56)

Condition: Good
Buy with Confidence. Excellent Customer Support. We ship from multiple US locations. No CD, DVD or Access Code Included.

Ships from: Fort Mill, SC

Usually ships in 1-2 business days

  • Standard, 48 States
Page 1 of 1
Showing All
Close
Sort by

Overview

The Parallel Programming Guide for Every Software Developer

From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software.

That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes:

  • Understanding the parallel computing landscape and the challenges faced by parallel developers
  • Finding the concurrency in a software design problem and decomposing it into concurrent tasks
  • Managing the use of data across tasks
  • Creating an algorithm structure that effectively exploits the concurrency you've identified
  • Connecting your algorithmic structures to the APIs needed to implement them
  • Specific software constructs for implementing parallel programs
  • Working with today's leading parallel programming environments: OpenMP, MPI, and Java

Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.

0321228111B08232004

Read More Show Less

Product Details

  • ISBN-13: 9780321228116
  • Publisher: Addison-Wesley
  • Publication date: 9/10/2004
  • Series: Software Patterns Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 355
  • Product dimensions: 7.31 (w) x 9.56 (h) x 1.00 (d)

Meet the Author

Timothy G. Mattson is Intel's industry manager for life sciences. His research focuses on technologies that simplify parallel computing for general programmers, with an emphasis on computational biology. He holds a Ph.D. in chemistry from the University of California, Santa Cruz.

Beverly A. Sanders is associate professor at the Department of Computer and Information Science and Engineering, University of Florida, Gainesville. Her research focuses on techniques to help programmers construct high-quality, correct programs, including formal methods, component systems, and design patterns. She holds a Ph.D. in applied mathematics from Harvard University.

Berna L. Massingill is assistant professor in the Department of Computer Science at Trinity University, San Antonio, Texas. Her research interests include parallel and distributed computing, design patterns, and formal methods. She holds a Ph.D. in computer science from the California Institute of Technology.

0321228111AB08232004

Read More Show Less

Read an Excerpt

"If you build it, they will come."

And so we built them. Multiprocessor workstations, massively parallel supercomputers, a cluster in every department ... and they haven't come. Programmers haven't come to program these wonderful machines. Oh, a few programmers in love with the challenge have shown that most types of problems can be force-fit onto parallel computers, but general programmers, especially professional programmers who "have lives", ignore parallel computers. And they do so at their own peril. Parallel computers are going mainstream. Multithreaded microprocessors, multicore CPUs, multiprocessor PCs, clusters, parallel game consoles ... parallel computers are taking over the world of computing. The computer industry is ready to flood the market with hardware that will only run at full speed with parallel programs. But who will write these programs?

This is an old problem. Even in the early 1980s, when the "killer micros" started their assault on traditional vector supercomputers, we worried endlessly about how to attract normal programmers. We tried everything we could think of: high-level hardware abstractions, implicitly parallel programming languages, parallel language extensions, and portable message-passing libraries. But after many years of hard work, the fact of the matter is that "they" didn't come. The overwhelming majority of programmers will not invest the effort to write parallel software.

A common view is that you can't teach old programmers new tricks, so the problem will not be solved until the old programmers fade away and a new generation takes over.

But we don't buy into that defeatist attitude. Programmers have shown a remarkable ability to adopt new software technologies over the years. Look at how many old Fortran programmers are now writing elegant Java programs with sophisticated object-oriented designs. The problem isn't with old programmers. The problem is with old parallel computing experts and the way they've tried to create a pool of capable parallel programmers.

And that's where this book comes in. We want to capture the essence of how expert parallel programmers think about parallel algorithms and communicate that essential understanding in a way professional programmers can readily master. The technology we've adopted to accomplish this task is a pattern language. We made this choice not because we started the project as devotees of design patterns looking for a new field to conquer, but because patterns have been shown to work in ways that would be applicable in parallel programming. For example, patterns have been very effective in the field of object-oriented design. They have provided a common language experts can use to talk about the elements of design and have been extremely effective at helping programmers master object-oriented design.

This book contains our pattern language for parallel programming. The book opens with a couple of chapters to introduce the key concepts in parallel computing. These chapters focus on the parallel computing concepts and jargon used in the pattern language as opposed to being an exhaustive introduction to the field. The pattern language itself is presented in four parts corresponding to thefour phases of creating a parallel program:

Finding Concurrency. The programmer works in the problem domain to identify the available concurrency and expose it for use in the algorithm design.

Algorithm Structure. The programmer works with high-level structures for organizing a parallel algorithm.

Supporting Structures. We shift from algorithms to source code and consider how the parallel program will be organized and the techniques used to manage shared data.

Implementation Mechanisms. The final step is to look at specific software constructs for implementing a parallel program.

The patterns making up these four design spaces are tightly linked. You start at the top (Finding Concurrency), work through the patterns, and by the time you get to the bottom (Implementation Mechanisms), you will have a detailed design for your parallel program.

If the goal is a parallel program, however, you need more than just a parallel algorithm. You also need a programming environment and a notation for expressing the concurrency within the program's source code. Programmers used to be confronted by a large and confusing array of parallel programming environments. Fortunately, over the years the parallel programming community has converged around three programming environments.

OpenMP. A simple language extension to C, C++, or Fortran to write parallel programs for shared-memory computers.

MPI. A message-passing library used on clusters and other distributed-memory computers.

Java. An object-oriented programming language with language features supporting parallel programming on shared-memory computers and standard class libraries supporting distributed computing.

Many readers will already be familiar with one or more of these programming notations, but for readers completely new to parallel computing, we've included a discussion of these programming environments in the appendixes.

In closing, we have been working for many years on this pattern language. Presenting it as a book so people can start using it is an exciting development for us. But we don't see this as the end of this effort. We expect that others will have their own ideas about new and better patterns for parallel programming. We've assuredly missed some important features that really belong in this pattern language. We embrace change and look forward to engaging with the larger parallel computing community to iterate on this language. Over time, we'll update and improve the pattern language until it truly represents the consensus view of the parallel programming community. Then our real work will begin—using the pattern language to guide the creation of better parallel programming environments and helping people to use these technologies to write parallel software. We won't rest until the day sequential software is rare.


Read More Show Less

Table of Contents

Preface.

1. A Pattern Language for Parallel Programming.

Introduction.

Parallel Programming.

Design Patterns and Pattern Languages.

A Pattern Language for Parallel Programming.

2. Background and Jargon of Parallel Computing.

Concurrency in Parallel Programs Versus Operating Systems.

Parallel Architectures: A Brief Introduction.

Parallel Programming Environments.

The Jargon of Parallel Computing.

A Quantitative Look at Parallel Computation.

Communication.

Summary.

3. The Finding Concurrency Design Space.

About the Design Space.

The Task Decomposition Pattern.

The Data Decomposition Pattern.

The Group Tasks Pattern.

The Order Tasks Pattern.

The Data Sharing Pattern.

The Design Evaluation Pattern.

Summary.

4. The Algorithm Structure Design Space.

Introduction.

Choosing an Algorithm Structure Pattern.

Examples.

The Task Parallelism Pattern.

The Divide and Conquer Pattern.

The Geometric Decomposition Pattern.

The Recursive Data Pattern.

The Pipeline Pattern.

The Event-Based Coordination Pattern.

5. The Supporting Structures Design Space.

Introduction.

Forces.

Choosing the Patterns.

The SPMD Pattern.

The Master/Worker Pattern.

The Loop Parallelism Pattern.

The Fork/Join Pattern.

The Shared Data Pattern.

The Shared Queue Pattern.

The Distributed Array Pattern.

Other Supporting Structures.

6. The Implementation Mechanisms Design Space.

Overview.

UE Management.

Synchronization.

Communication.

Appendix A. A Brief Introduction to OpenMP.

Appendix B. A Brief Introduction to MPI.

Appendix C. A Brief Introduction to Concurrent Programming in Java.

Glossary.

Bibliography.

About the Authors.

Index.

Read More Show Less

Preface

"If you build it, they will come."

And so we built them. Multiprocessor workstations, massively parallel supercomputers, a cluster in every department ... and they haven't come. Programmers haven't come to program these wonderful machines. Oh, a few programmers in love with the challenge have shown that most types of problems can be force-fit onto parallel computers, but general programmers, especially professional programmers who "have lives", ignore parallel computers. And they do so at their own peril. Parallel computers are going mainstream. Multithreaded microprocessors, multicore CPUs, multiprocessor PCs, clusters, parallel game consoles ... parallel computers are taking over the world of computing. The computer industry is ready to flood the market with hardware that will only run at full speed with parallel programs. But who will write these programs?

This is an old problem. Even in the early 1980s, when the "killer micros" started their assault on traditional vector supercomputers, we worried endlessly about how to attract normal programmers. We tried everything we could think of: high-level hardware abstractions, implicitly parallel programming languages, parallel language extensions, and portable message-passing libraries. But after many years of hard work, the fact of the matter is that "they" didn't come. The overwhelming majority of programmers will not invest the effort to write parallel software.

A common view is that you can't teach old programmers new tricks, so the problem will not be solved until the old programmers fade away and a new generation takes over.

But we don't buy into that defeatist attitude. Programmers have shown a remarkable ability to adopt new software technologies over the years. Look at how many old Fortran programmers are now writing elegant Java programs with sophisticated object-oriented designs. The problem isn't with old programmers. The problem is with old parallel computing experts and the way they've tried to create a pool of capable parallel programmers.

And that's where this book comes in. We want to capture the essence of how expert parallel programmers think about parallel algorithms and communicate that essential understanding in a way professional programmers can readily master. The technology we've adopted to accomplish this task is a pattern language. We made this choice not because we started the project as devotees of design patterns looking for a new field to conquer, but because patterns have been shown to work in ways that would be applicable in parallel programming. For example, patterns have been very effective in the field of object-oriented design. They have provided a common language experts can use to talk about the elements of design and have been extremely effective at helping programmers master object-oriented design.

This book contains our pattern language for parallel programming. The book opens with a couple of chapters to introduce the key concepts in parallel computing. These chapters focus on the parallel computing concepts and jargon used in the pattern language as opposed to being an exhaustive introduction to the field. The pattern language itself is presented in four parts corresponding to thefour phases of creating a parallel program:

Finding Concurrency . The programmer works in the problem domain to identify the available concurrency and expose it for use in the algorithm design.

Algorithm Structure . The programmer works with high-level structures for organizing a parallel algorithm.

Supporting Structures . We shift from algorithms to source code and consider how the parallel program will be organized and the techniques used to manage shared data.

Implementation Mechanisms . The final step is to look at specific software constructs for implementing a parallel program.

The patterns making up these four design spaces are tightly linked. You start at the top (Finding Concurrency), work through the patterns, and by the time you get to the bottom (Implementation Mechanisms), you will have a detailed design for your parallel program.

If the goal is a parallel program, however, you need more than just a parallel algorithm. You also need a programming environment and a notation for expressing the concurrency within the program's source code. Programmers used to be confronted by a large and confusing array of parallel programming environments. Fortunately, over the years the parallel programming community has converged around three programming environments.

OpenMP. A simple language extension to C, C++, or Fortran to write parallel programs for shared-memory computers.

MPI. A message-passing library used on clusters and other distributed-memory computers.

Java. An object-oriented programming language with language features supporting parallel programming on shared-memory computers and standard class libraries supporting distributed computing.

Many readers will already be familiar with one or more of these programming notations, but for readers completely new to parallel computing, we've included a discussion of these programming environments in the appendixes.

In closing, we have been working for many years on this pattern language. Presenting it as a book so people can start using it is an exciting development for us. But we don't see this as the end of this effort. We expect that others will have their own ideas about new and better patterns for parallel programming. We've assuredly missed some important features that really belong in this pattern language. We embrace change and look forward to engaging with the larger parallel computing community to iterate on this language. Over time, we'll update and improve the pattern language until it truly represents the consensus view of the parallel programming community. Then our real work will begin--using the pattern language to guide the creation of better parallel programming environments and helping people to use these technologies to write parallel software. We won't rest until the day sequential software is rare.

0321228111P08232004

Read More Show Less

Introduction

"If you build it, they will come."

And so we built them. Multiprocessor workstations, massively parallel supercomputers, a cluster in every department ... and they haven't come. Programmers haven't come to program these wonderful machines. Oh, a few programmers in love with the challenge have shown that most types of problems can be force-fit onto parallel computers, but general programmers, especially professional programmers who "have lives", ignore parallel computers. And they do so at their own peril. Parallel computers are going mainstream. Multithreaded microprocessors, multicore CPUs, multiprocessor PCs, clusters, parallel game consoles ... parallel computers are taking over the world of computing. The computer industry is ready to flood the market with hardware that will only run at full speed with parallel programs. But who will write these programs?

This is an old problem. Even in the early 1980s, when the "killer micros" started their assault on traditional vector supercomputers, we worried endlessly about how to attract normal programmers. We tried everything we could think of: high-level hardware abstractions, implicitly parallel programming languages, parallel language extensions, and portable message-passing libraries. But after many years of hard work, the fact of the matter is that "they" didn't come. The overwhelming majority of programmers will not invest the effort to write parallel software.

A common view is that you can't teach old programmers new tricks, so the problem will not be solved until the old programmers fade away and a new generation takes over.

But we don't buy into that defeatist attitude. Programmers have shown aremarkable ability to adopt new software technologies over the years. Look at how many old Fortran programmers are now writing elegant Java programs with sophisticated object-oriented designs. The problem isn't with old programmers. The problem is with old parallel computing experts and the way they've tried to create a pool of capable parallel programmers.

And that's where this book comes in. We want to capture the essence of how expert parallel programmers think about parallel algorithms and communicate that essential understanding in a way professional programmers can readily master. The technology we've adopted to accomplish this task is a pattern language. We made this choice not because we started the project as devotees of design patterns looking for a new field to conquer, but because patterns have been shown to work in ways that would be applicable in parallel programming. For example, patterns have been very effective in the field of object-oriented design. They have provided a common language experts can use to talk about the elements of design and have been extremely effective at helping programmers master object-oriented design.

This book contains our pattern language for parallel programming. The book opens with a couple of chapters to introduce the key concepts in parallel computing. These chapters focus on the parallel computing concepts and jargon used in the pattern language as opposed to being an exhaustive introduction to the field. The pattern language itself is presented in four parts corresponding to thefour phases of creating a parallel program:

Finding Concurrency. The programmer works in the problem domain to identify the available concurrency and expose it for use in the algorithm design.

Algorithm Structure. The programmer works with high-level structures for organizing a parallel algorithm.

Supporting Structures. We shift from algorithms to source code and consider how the parallel program will be organized and the techniques used to manage shared data.

Implementation Mechanisms. The final step is to look at specific software constructs for implementing a parallel program.

The patterns making up these four design spaces are tightly linked. You start at the top (Finding Concurrency), work through the patterns, and by the time you get to the bottom (Implementation Mechanisms), you will have a detailed design for your parallel program.

If the goal is a parallel program, however, you need more than just a parallel algorithm. You also need a programming environment and a notation for expressing the concurrency within the program's source code. Programmers used to be confronted by a large and confusing array of parallel programming environments. Fortunately, over the years the parallel programming community has converged around three programming environments.

OpenMP. A simple language extension to C, C++, or Fortran to write parallel programs for shared-memory computers.

MPI. A message-passing library used on clusters and other distributed-memory computers.

Java. An object-oriented programming language with language features supporting parallel programming on shared-memory computers and standard class libraries supporting distributed computing.

Many readers will already be familiar with one or more of these programming notations, but for readers completely new to parallel computing, we've included a discussion of these programming environments in the appendixes.

In closing, we have been working for many years on this pattern language. Presenting it as a book so people can start using it is an exciting development for us. But we don't see this as the end of this effort. We expect that others will have their own ideas about new and better patterns for parallel programming. We've assuredly missed some important features that really belong in this pattern language. We embrace change and look forward to engaging with the larger parallel computing community to iterate on this language. Over time, we'll update and improve the pattern language until it truly represents the consensus view of the parallel programming community. Then our real work will begin--using the pattern language to guide the creation of better parallel programming environments and helping people to use these technologies to write parallel software. We won't rest until the day sequential software is rare.

Read More Show Less

Customer Reviews

Average Rating 3
( 3 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(1)

2 Star

(0)

1 Star

(1)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 3 Customer Reviews
  • Anonymous

    Posted December 30, 2004

    a pattern language

    This book tries to do for parallel programming what the seminal Gang of Four book did for sequential programming. While it remains to be seen if Mattson, Sanders and Massingill will succeed, their book serves a vital educational role. Until the 90s, parallel programming was relatively rare. But as hardware continued to get cheaper, many practical uses emerged. The authors point out that the bottleneck has now shifted to software. How does one find concurrency in a design? And given this, how to code it? The book tackles both issues. The latter is treated by explaining how to use MPI, OpenMP and Java for parallel coding. Where MPI and OpenMP were expressly made for this task. And with Java, the book discusses its concurrency classes and how these can be applied to parallel problems. The former issue of somehow finding concurrency is harder. This is really a wetware issue. You are the wetware. The book's core value is in showing common parallel patterns, that distills the essence of much previous work in the field. Plus, the book is not just iterating through a list of such patterns. As with the GoF, we have a pattern language. A metalevel, in which a walkthrough of the patterns and comparing these with your problem, helps you find appropriate patterns to map it to.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 20, 2009

    No text was provided for this review.

  • Anonymous

    Posted December 10, 2009

    No text was provided for this review.

Sort by: Showing all of 3 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)