Performance Analysis and Modeling of Digital Transmission Systems


This book describes mathematical methods for analyzing digital transmission system performance. In contrast with publications that use an idealistic model of channels with independent errors, this book shows how to evaluate performance characteristics of information transmission systems in real communication channels with bursts of noise. The book shows how to apply hidden Markov Models (HMMs) to model and analyze performance of communications systems (including error correction codes and communication prools) in...

See more details below
Paperback (Softcover reprint of the original 1st ed. 2004)
$99.00 price
Other sellers (Paperback)
  • All (6) from $73.66   
  • New (5) from $73.66   
  • Used (1) from $148.56   
Sending request ...


This book describes mathematical methods for analyzing digital transmission system performance. In contrast with publications that use an idealistic model of channels with independent errors, this book shows how to evaluate performance characteristics of information transmission systems in real communication channels with bursts of noise. The book shows how to apply hidden Markov Models (HMMs) to model and analyze performance of communications systems (including error correction codes and communication prools) in channels with memory. This edition includes a new chapter describing the theory and applications of continuous state HMMs. Methods developed in the book have broad applications in queuing theory, speech and image recognition, signature verification, control theory, artificial intelligence, biology, fraud detection, and finance. The attached CD-ROM contains numerous MATLAB® programs implementing the theory described in the book. With a rich assortment of chapter-ending problems and illustrations, the book and CD-ROM are perfect tools for the study of HMM methods or for use as a classroom text.

Read More Show Less

Product Details

Table of Contents

Preface.- Notation.- 1. Error Source Models.- 1.1 Description of Error Sources by Hidden Markov Models.- 1.1.1 Finite State Channel.- 1.1.2 Hidden Markov Models.- 1.1.3 Discrete-Time Finite State Systems.- 1.1.4 Error Source HMM.- 1.1.5 Gilbert’s Model.- 1.1.6 Equivalent Models.- 1.1.7 The HMM Model Generality.- 1.1.8 Satellite Channel Model.- 1.1.9 Fading Wireless Channels.- 1.1.10 Concatenated Channel Error Sources.- 1.2 Binary Symmetric Stationary Channel.- 1.2.1 Model Description.- 1.2.2 Diagonalization of the Matrices.- 1.2.3 Models with Two Sets of States.- 1.2.4 Block Matrix Representation.- 1.3 Error Source Description by Matrix Processes.- 1.3.1 Matrix Process Definition.- 1.3.2 Block Matrix Representation.- 1.3.3 Matrix Processes and Difference Equations.- 1.3.4 Matrix Processes and Markov Functions.- 1.4 Error Source Description by Semi-Markov Processes.- 1.4.1 Semi-Markov Processes.- 1.4.2 Semi-Markov Lumping of Markov Chain.- 1.5 Some Particular Error Source Models.- 1.5.1 Single-Error-State Models.- 1.5.2 Alternating Renewal Process Models.- 1.5.3 Alternating State HMM.- 1.5.4 Fading Channel Errors.- 1.6 Conclusion.- References.- 2. Matrix Probabilities.- 2.1 Matrix Probabilities and Their Properties.- 2.1.1 Basic Definitions.- 2.1.2 Properties of Matrix Probabilities.- 2.1.3 Random Variables.- 2.2 Matrix Transforms.- 2.2.1 Matrix Generating Functions.- 2.2.2 Matrix z-Transforms.- 2.2.3 Matrix Fourier Transform.- 2.2.4 Matrix Discrete Fourier Transform.- 2.2.5 Matrix Transforms and Difference Equations.- 2.3 Matrix Distributions.- 2.3.1 Matrix Multinomial Distribution.- 2.3.2 Matrix Binomial Distribution.- 2.3.3 Matrix Pascal Distribution.- 2.4 Markov Functions.- 2.4.1 Block Matrix Probabilities.- 2.4.2 Matrix Multinomial Distribution.- 2.4.3 Interval Distributions of Markov Functions.- 2.4.4 Signal Flow Graph Applications.- 2.5 Monte Carlo Method.- 2.5.1 Error Source Simulation.- 2.5.2 Performance Characteristic Calculation.- 2.6 Computing Scalar Probabilities.- 2.6.1 The Forward and Backward Algorithms.- 2.6.2 Scalar Generating Functions.- 2.7 Conclusion.- References.- 3. Model Parameter Estimation.- 3.1 The Em Algorithm.- 3.1.1 Kullback-Leibler Divergence.- 3.1.2 Minimization Algorithms.- 3.1.3 The EM Algorithm.- 3.1.4 Maximization of a Function.- 3.1.5 EM Algorithm Acceleration.- 3.1.6 Statistical EM Algorithm.- 3.2 Baum-Welch Algorithm.- 3.2.1 Phase-Type Distribution Approximation.- 3.2.2 HMM Approximation.- 3.2.3 Fitting HMM to Experimental Data.- 3.2.4 Matrix Form of the BWA.- 3.2.5 Scaling.- 3.3 Markov Renewal Process.- 3.3.1 Fast Forward and Backward Algorithms.- 3.3.2 Fitting MRP.- 3.4 Matrix-Geometric Distribution Parameter Estimation.- 3.4.1 Distribution Simplification.- 3.4.2 ML Parameter Estimation.- 3.4.3 Sequential Least Mean Square Method.- 3.4.4 Piecewise Logarithmic Transformation.- 3.4.5 Prony’s Method.- 3.4.6 Matrix Echelon Parametrization.- 3.4.7 Utilization of the Cumulative Distribution Function.- 3.4.8 Method of Moments.- 3.4.9 Transform Domain Approximation.- 3.5 Matrix Process Parameter Estimation.- 3.5.1 ML Parameter Estimation.- 3.5.2 Interval Distribution Estimation.- 3.5.3 Utilization of Two-Dimensional Distributions.- 3.5.4 Polygeometric Distributions.- 3.5.5 Error Bursts.- 3.6 Hmm Parameter Estimation.- 3.6.1 Multilayered Error Clusters.- 3.6.2 Nested Markov Chains.- 3.6.3 Single-Error-State Models.- 3.7 Monte Carlo Method of Model Building.- 3.8 Error Source Model in Several Channels.- 3.9 Conclusion.- References.- 4. Performance of Forward Error-Correction Systems.- 4.1 Basic Characteristics of One-Way Systems.- 4.2 Elements of Error-Correcting Coding.- 4.2.1 Field Galois Arithmetic.- 4.2.2 Linear Codes.- 4.2.3 Cyclic Codes.- 4.2.4 Bose-Chaudhuri-Hocquenghem Codes.- 4.2.5 Reed-Solomon Codes.- 4.2.6 Convolutional Codes.- 4.2.6 Trellis-Code Modulation.- 4.3 Maximum A Posteriori Decoding.- 4.3.1 MAP Symbol Estimation.- 4.3.2 MAP Sequence Decoding.- 4.4 Block Code Performance Characterization.- 4.4.1 The Probability of Undetected Error.- 4.4.2 Performance of Forward Error-Correcting Codes.- 4.4.3 Symmetrically Dependent Errors.- 4.4.4 Upper and Lower Bounds.- 4.4.5 Postdecoding Error Probability.- 4.4.6 Soft Decision Decoding.- 4.4.7 Correcting Errors and Erasures.- 4.4.8 Product Codes.- 4.4.9 Concatenated Codes.- 4.5 Convolutional Code Performance.- 4.5.1 Viterbi Algorithm Performance.- 4.5.2 Syndrome Decoding Performance.- 4.6 Computer Simulation.- 4.7 Zero-Redundancy Codes.- 4.7.1 Interleaving.- 4.7.2 Encryptors and Scramblers.- 4.8 Conclusion.- References.- 5. Performance Analysis of Communication Prool.- 5.1 Basic Characteristics of Two-Way Systems.- 5.2 Return-Channel Messages.- 5.3 Synchronization.- 5.4 Arq Performance Characteristics.- 5.4.1 Stop-and-Wait ARQ.- 5.4.2 Message Delay Distribution.- 5.4.3 Insertion and Loss Interval Distribution.- 5.4.4 Accepted Messages.- 5.4.5 Alternative Assumptions.- 5.4.6 Modified Stop-and-Wait ARQ.- 5.4.7 Go-Back-N ARQ.- 5.4.8 Multiframe Messages.- 5.5 Delay-Constained Systems.- 5.5.1 Queue-Length Probability Distribution.- 5.5.2 Packet Delay Probability.- 5.6 Conclusion.- References.- 6. Continuous Time Hmm.- 6.1 Continuous and Discrete Time Hmm.- 6.1.1 Markov Arrival Processes.- 6.1.2 MAP Discrete Skeleton.- 6.1.3 Matrix Poisson Distribution.- 6.2 Fitting Continuous Time Hmm.- 6.2.1 Fitting Phase-Type Distribution.- 6.2.2 HMM Approximation.- 6.3 Conclusion.- References.- 7. Continuous State Hmm.- 7.1 Continuous and Discrete State Hmm.- 7.2 Operator Probability.- 7.3 Filtering, Prediction, and Smoothing.- 7.4 Linear Systems.- 7.4.1 Auovariance Function.- 7.4.2 Observation Sequence PDF.- 7.4.3 Kalman Filter PDF.- 7.4.4 The Innovation Representation PDF.- 7.4.5 The Backward Algorithm.- 7.4.6 The Forward-Backward Algorithm PDF.- 7.4.7 RTS Smoother.- 7.4.8 Viterbi Algorithm.- 7.5 Autoregressive Moving Average Processes.- 7.5.1 State Space Representation.- 7.5.2 Auovariance Function.- 7.5.3 The Forward Algorithm.- 7.5.4 RTS Smoother.- 7.6 Parameter Estimation.- 7.6.1 HMM Approximation.- 7.6.2 HGMM Approximation.- 7.7 Arma Channel Modeling.- 7.7.1 Fading Channel.- 7.7.2 Ultra-Wide Bandwidth Channel.- 7.8 Conclusion.- References.- Appendix 1.- 1.1 Matrix Processes.- 1.1.1 Reduced Canonic Representation.- 1.2 Markov Lumpable Chains.- 1.3 Semi-Markov Lumpable Chains.- References.- Appendix 2.- 2.1 Asymptotic Expansion of Matrix Probabilities.- 2.2 Chernoff Bounds.- 2.3 Block Graphs.- References.- Appendix 3.- 3.1 Statistical Inference.- 3.1.1 Distribution Parameter Estimation.- 3.1.2 Hypothesis Testing.- 3.1.3 Goodness of Fit.- 3.1.4 Confidence Limits.- 3.2 Markov Chain Model Building.- 3.2.1 Statistical Tests for Simple Markov Chains.- 3.2.2 Multiple Markov Chains.- 3.3 Semi-Markov Process Hypothesis Testing.- 3.3.1 ML Parameter Estimation.- 3.3.2 Grouped Data.- 3.3.3 Underlying Markov Chain Parameter Estimation.- 3.3.4 Autonomous Semi-Markov Processes.- 3.4 Matrix Process Parameter Estimation.- References.- Appendix 4.- 4.1 Sums With Binomial Coefficients.- 4.2 Maximum-Distance-Separable Code Weight Generating Function.- 4.3 Union Bounds on Viterbi Algorithm Performance.- References.- Appendix 5.- 5.1 Matrices.- 5.1.1 Basic Definitions.- 5.1.2 Systems of Linear Equations.- 5.1.3 Calculating Powers of a Matrix.- 5.1.4 Eigenvectors and Eigenvalues.- 5.1.5 Similar Matrices.- 5.1.6 Matrix Series Summation.- 5.1.7 Product of Several Matrices.- 5.1.8 Fast Exponentiation.- 5.1.9 Matrix Derivatives.- 5.1.10 Quadratic Polynomials.- 5.1.11 Quadratic Forms.- References.- Appendix 6.- 6.1 Markov Chains and Graphs.- 6.1.1 Transition Probabilities.- 6.1.2 Stationary Markov Chains.- 6.1.3 Partitioning States of a Markov Chains.- 6.1.4 Signal Flow Graphs.- References.- Appendix 7.- 7.1 Markov Processes.- 7.1.1 Transition Probability Densities.- 7.1.2 Transition Probability Operators.- 7.2 Gauss-Markov Processes.- 7.2.1 Gaussian Random variables and Processes.- 7.2.2 Linear Systems.- 7.2.3 Operator Pm.- 7.2.4 Stationary Distribution.- 7.2.5 Auovariance Function.- 7.2.6 Autoregressive Processes.- 7.2.7 Parameter Estimation.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)