Performance Tuning of Scientific Applications
With contributions from some of the most notable experts in the field, Performance Tuning of Scientific Applications presents current research in performance analysis. The book focuses on the following areas.Performance monitoring: Describes the state of the art in hardware and software tools that are commonly used for monitoring and measuring perf
1128473320
Performance Tuning of Scientific Applications
With contributions from some of the most notable experts in the field, Performance Tuning of Scientific Applications presents current research in performance analysis. The book focuses on the following areas.Performance monitoring: Describes the state of the art in hardware and software tools that are commonly used for monitoring and measuring perf
82.99 In Stock
Performance Tuning of Scientific Applications

Performance Tuning of Scientific Applications

Performance Tuning of Scientific Applications

Performance Tuning of Scientific Applications

eBook

$82.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

With contributions from some of the most notable experts in the field, Performance Tuning of Scientific Applications presents current research in performance analysis. The book focuses on the following areas.Performance monitoring: Describes the state of the art in hardware and software tools that are commonly used for monitoring and measuring perf

Product Details

ISBN-13: 9781040208922
Publisher: CRC Press
Publication date: 11/23/2010
Sold by: Barnes & Noble
Format: eBook
Pages: 400
File size: 15 MB
Note: This product may take a few minutes to download.

About the Author

David Bailey is a chief technologist in the High Performance Computational Research Department at the Lawrence Berkeley National Laboratory. Dr. Bailey has published several books and numerous research studies on computational and experimental mathematics. He has been a recipient of the ACM Gordon Bell Prize, the IEEE Sidney Fernbach Award, and the MAA Chauvenet Prize and Merten Hasse Prize.

Robert Lucas is the director of computational sciences in the Information Sciences Institute and a research associate professor in computer science in the Viterbi School of Engineering at the University of Southern California. Dr. Lucas has many years of experience working with high-end defense, national intelligence, and energy applications and simulations. His linear solvers are the computational kernels of electrical and mechanical CAD tools.

Samuel Williams is a researcher in the Future Technologies Group at the Lawrence Berkeley National Laboratory. Dr. Williams has authored or co-authored thirty technical papers, including several award-winning papers. His research interests include high-performance computing, auto-tuning, computer architecture, performance modeling, and VLSI.

Table of Contents

Introduction. Parallel Computer Architecture. Software Interfaces to Hardware Counters. Measurement and Analysis of Parallel Program Performance using TAU and HPCToolkit. Trace-Based Tools. Large-Scale Numerical Simulations on High-End Computational Platforms. Performance Modeling: The Convolution Approach. Analytic Modeling for Memory Access Patterns Based on Apex-MAP. The Roofline Model. End-to-End Auto-Tuning with Active Harmony. Languages and Compilers for Auto-Tuning. Empirical Performance Tuning of Dense Linear Algebra Software. Auto-Tuning Memory-Intensive Kernels for Multicore. Flexible Tools Supporting a Scalable First-Principles MD Code. The Community Climate System Model. Tuning an Electronic Structure Code. Bibliography. Index.
From the B&N Reads Blog

Customer Reviews