Perturbation Methods for Differential Equations / Edition 1

Perturbation Methods for Differential Equations / Edition 1

by Bhimsen Shivamoggi
ISBN-10:
0817641890
ISBN-13:
9780817641894
Pub. Date:
12/13/2002
Publisher:
Birkh�user Boston
ISBN-10:
0817641890
ISBN-13:
9780817641894
Pub. Date:
12/13/2002
Publisher:
Birkh�user Boston
Perturbation Methods for Differential Equations / Edition 1

Perturbation Methods for Differential Equations / Edition 1

by Bhimsen Shivamoggi
$54.99
Current price is , Original price is $54.99. You
$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

In nonlinear problems, essentially new phenomena occur which have no place in the corresponding linear problems. Therefore, in the study of nonlinear problems the major purpose is not so much to introduce methods that improve the accuracy of linear methods, but to focus attention on those features of the nonlinearities that result in distinctively new phenomena. Among the latter are - * existence of solutions ofperiodic problems for all frequencies rather than only a setofcharacteristic values, * dependenceofamplitude on frequency, * removal ofresonance infinities, * appearance ofjump phenomena, * onsetofchaotic motions. On the other hand, mathematical problems associated with nonlinearities are so complex that a comprehensive theory of nonlinear phenomena is out of the question.' Consequently, one practical approach is to settle for something less than complete generality. Thus, one gives up the study of global behavior of solutions of a nonlinear problem and seeks nonlinear solutions in the neighborhood of (or as perturbations about) a known linear solution. This is the basic idea behind a perturbative solutionofa nonlinear problem.

Product Details

ISBN-13: 9780817641894
Publisher: Birkh�user Boston
Publication date: 12/13/2002
Edition description: 2003
Pages: 354
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

1 Asymptotic Series and Expansions.- 1.1 Introduction.- 1.2 Taylor Series Expansions.- 1.3 Gauge Functions.- 1.4 Asymptotic Series and Expansions.- 1.5 Asymptotic Solutions of Differential Equations.- 1.6 Exercises.- 2 Regular Perturbation Methods.- 2.1 Introduction.- 2.2 Algebraic Equations.- 2.3 Ordinary Differential Equations.- 2.4 Partial Differential Equations.- 2.5 Applications to Fluid Dynamics: Decay of a Line Vortex.- 2.6 Exercises.- 2.7 Appendix. Review of Partial Differential Equations.- 3 The Method of Strained Coordinates/Parameters.- 3.1 Introduction.- 3.2 Poincaré-Lindstedt-Lighthill Method of Perturbed Eigenvalues.- 3.3 Eigenfunction Expansion Method.- 3.4 Lighthill’s Method of Shifting Singularities.- 3.5 Pritulo’s Method of Renormalization.- 3.6 Wave Propagation in an Inhomogeneous Medium.- 3.7 Applications to Solid Mechanics: Nonlinear Buckling of Elastic Columns.- 3.8 Applications to Fluid Dynamics.- 3.9 Applications to Plasma Physics.- 3.10 Limitations of the Method of Strained Parameters.- 3.11 Exercises.- 3.12 Appendix 1. Fredholm’s Alternative Theorem.- 3.13 Appendix 2. Floquet Theory.- 3.14 Appendix 3. Bifurcation Theory.- 4 Method of Averaging.- 4.1 Introduction.- 4.2 Krylov-Bogoliubov Method of Averaging.- 4.3 Krylov-Bogoliubov-Mitropolski Generalized Method of Averaging.- 4.4 Whitham’s Averaged Lagrangian Method.- 4.5 Hamiltonian Perturbation Method.- 4.6 Applications to Fluid Dynamics: Nonlinear Evolution of Modulated Gravity Wave Packet on the Surface of a Fluid.- 4.7 Exercises.- 4.8 Appendix 1. Review of Calculus of Variations.- 4.9 Appendix 2. Hamilton-Jacobi Theory.- 5 The Method of Matched Asymptotic Expansions.- 5.1 Introduction.- 5.2 Physical Motivation.- 5.3 The Inner and Outer Expansions.- 5.4 Hyperbolic Equations.- 5.5Elliptic Equations.- 5.6 Parabolic Equations.- 5.7 Interior Layers.- 5.8 Latta’s Method of Composite Expansions.- 5.9 Turning Point Problems.- 5.10 Applications to Fluid Dynamics: Boundary-Layer Flow Past a Flat Plate.- 5.11 Exercises.- 5.12 Appendix 1. Initial-Value Problem for Partial Differential Equations.- 5.13 Appendix 2. Review of Nonlinear Hyperbolic Equations.- 6 Method of Multiple Scales.- 6.1 Introduction.- 6.2 Differential Equations with Constant Coefficients.- 6.3 Struble’s Method.- 6.4 Differential Equations with Slowly Varying Coefficients.- 6.5 Generalized Multiple-Scale Method.- 6.6 Applications to Solid Mechanics: Dynamic Buckling of a Thin Elastic Plate.- 6.7 Applications to Fluid Dynamics.- 6.8 Applications to Plasma Physics.- 6.9 Exercises.- 7 Miscellaneous Perturbation Methods.- 7.1 A Quantum-Field-Theoretic Perturbative Procedure.- 7.2 A Perturbation Method for Linear Shastic Differential Equations.- 7.3 Exercises.
From the B&N Reads Blog

Customer Reviews