Pharmacokinetics and Metabolism in Drug Design / Edition 2

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $325.62
Usually ships in 1-2 business days
Other sellers (Hardcover)
  • All (1) from $325.62   
  • New (1) from $325.62   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$325.62
Seller since 2011

Feedback rating:

(906)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Brand new and unread! Join our growing list of satisfied customers!

Ships from: Phoenix, MD

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

In this new edition of a bestseller, all the contents have been updated and new material has been added, especially in the areas of toxicity testing and high throughput analysis. The authors, all of them employed at Pfizer in the discovery and development of new active substances, discuss the significant parameters and processes important for the absorption, distribution and retention of drug compounds in the body, plus the potential problems created by their transformation into toxic byproducts. They cover everything from the fundamental principles right up to the impact of pharmacokinetic parameters on the discovery of new drugs.
While aimed at all those dealing professionally with the development and application of pharmaceutical substances, the readily comprehensible style makes this book equally suitable for students of pharmacy and related subjects.
Read More Show Less

Editorial Reviews

From the Publisher
"This work will interest and inform both the beginning professional in the field of drug discovery/design and the medicinal chemist…I also highly recommend it for students…" (Journal of Medicinal Chemistry, December 14, 2006)

"…extremely useful to students of Toxicology and others with an interest in the subject." (British Toxicology Society Newsletter, Summer 2007)

Read More Show Less

Product Details

  • ISBN-13: 9783527313686
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 5/28/2006
  • Series: Methods and Principles in Medicinal Chemistry Series , #30
  • Edition description: Revised
  • Edition number: 2
  • Pages: 207
  • Product dimensions: 7.03 (w) x 9.67 (h) x 0.65 (d)

Meet the Author

Dennis Smith
Dennis Smith has worked in the pharmaceutical industry for the past 30 years since gaining his Ph.D. from the University of Manchester. For the last 18 years he has been at Pfizer global research and Development, Sandwich where he is vice President-Pharmacokinetics, Dynamics and Metabolism. His research interests and publications span all aspects of Drug Discovery and Development particularly where drug metabolism knowledge can impact on the design of more efficacious and safer drugs. During this 30-year span he has helped in the Discovery and Development of eight marketed NCEs, with hopefully several more to come. He has authored over 100 publications. He is active in a teaching role holding appointments as visiting Professor at the University of Liverpool and Honorary Senior Lecturer at the University of Aberdeen and lectures widely to students at several other Universities.
His wish in much of his work is "to inspire another generation to take up the cudgel against disease".

Han van de Waterbeemd studied physical organic chemistry at the Technical University of Eindhoven and did a Ph.D. in medicinal chemistry at the University of Leiden, The Netherlands. After a post-doc with Bernard Testa at the University of Lausanne, Switzerland, he became a faculty member for 5 years and taught medicinal chemistry to pharmacy students at the universities of Berne and Basel, Switzerland. In his pharmaceutical career he worked for Roche, Pfizer and Astra-Zeneca where he is now global project leader of their platform for in silico predictions of ADME/Tax properties. He published more than 133 peer reviewed papers and book chapters, and (co-) edited 11 books. His research interests include the role of physicochemical and structural molecular properties in drug disposition and in silico modeling of ADMET properties.

Don Walker has a degree in Biochemistry from the University of London and spent four years assisting research involving the biochemistry of inborn errors of metabolism. He joined the Drug Metabolism Department at Pfizer in Sandwich in 1986 and since then has contributed to the drug metabolism and pharmacokinetic evaluations on several drug discovery and development projects including amlodopine, dofetilide, sildenafil, variconazole and maraviroc. He has published numerous papers on drug metabolism and pharmacokinetics and during his career at Pfizer he has been an active contributor to the UK Drug Metabolism Discussion Group, at various times having served as committee member, chairman and course tutor.

Read More Show Less

Table of Contents

Preface.

Abbreviations and Symbols.

1. Physicochemistry.

1.1 Physicochemistry and Pharmacokinetics.

1.2 Partition and Distribution Coefficient as Measures of Lipophilicity.

1.3 Limitations on the Use of 1-Octanol.

1.4 Further Understanding of Log P.

1.4.1 Unravelling the Principal Contributions to Log P.

1.4.2 Hydrogen Bonding.

1.4.3 Molecular Size and Shape.

1.5 Alternative Lipophilicity Scales.

1.5.1 Different Solvent Systems.

1.5.2 Chromatographic Approaches.

1.5.3 Liposome Partitioning.

1.6 Computational Approaches to Lipophilicity.

1.7 Membrane Systems to Study Drug Behaviour.

1.8 Dissolution and Solubility.

1.8.1 Why Measure Solubility?

1.8.2 Calculated Solubility.

1.9 Ionisation (pKa).

2. Pharmacokinetics.

2.1 Setting the Scene.

2.2 Intravenous Administration: Volume of Distribution.

2.3 Intravenous Administration: Clearance.

2.4 Intravenous Administration: Clearance and Half-life.

2.5 Intravenous Administration: Infusion.

2.6 Oral Administration.

2.7 Repeated Doses.

2.8 Development of the Unbound (Free) Drug Model.

2.9 Unbound Drug and Drug Action.

2.10 Unbound Drug Model and Barriers to Equilibrium.

2.11 Slow Offset Compounds.

2.12 Factors Governing Unbound Drug Concentration.

3. Absorption.

3.1 The Absorption Process.

3.2 Dissolution.

3.3 Membrane Transfer.

3.4 Barriers to Membrane Transfer.

3.5 Models for Absorption Estimation.

3.6 Estimation of Absorption Potential.

3.7 Computational Approaches.

4. Distribution.

4.1 Membrane Transfer Access to the Target.

4.2 Brain Penetration.

4.3 Volume of Distribution and Duration.

4.4 Distribution and Tmax.

5. Clearance.

5.1 The Clearance Processes.

5.2 Role of Transport Proteins in Drug Clearance.

5.3 Interplay Between Metabolic and Renal Clearance.

5.4 Role of Lipophilicity in Drug Clearance.

6. Renal Clearance.

6.1 Kidney Anatomy and Function.

6.2 Lipophilicity and Reabsorption bu the Kidney.

6.3 Effect of Charge on renal Clearance.

6.4 Plasma Protein Binding and Renal Clearance.

6.5 Balancing Renal Clearance and Absorption.

6.6 Renal Clearance and Drug Design.

7. Metabolic (Hepatic) Clearance.

7.1 Function of Metabolism (Biotransformation).

7.2 Cytochrome.

7.2.1 Catalytic Selectivity of CYP2D6.

7.2.2 Catalytic Selectivity of CYP2C9.

7.2.3 Catalytic Selectivity of CYP3A4.

7.3 Other Oxidative Metabolism Processes.

7.4 Oxidative Metabolism and Drug Design.

7.5 Non-Specific Esterases.

7.5.1 Function of Esterases.

7.5.2 Ester Drugs as Intravenous and Topical Agents.

7.6 Prodrugs to Aid Membrane Transfer.

7.7 Enzymes Catalysing Drug Conjugation.

7.7.1 Glucuronyl and Sulpho-Transferases.

7.7.2 Methyl Transferases.

7.7.3 Glutathione S-Transferases.

7.8 Stability to Conjugation Processes.

7.9 Pharmacodynamics and Conjugation.

8. Toxicity.

8.1 Toxicity Findings.

8.1.1 Pharmacophore-induced Toxicity.

8.1.2 Structure-related Toxicity.

8.1.3 Metabolism-induced Toxicity.

8.2 Importance of Dose Size.

8.3 Expoxides.

8.4 Quinone Imines.

8.5 Nitrenium Ions.

8.6 Iminium Ions.

8.7 Hydroxylamines.

8.8 Thiophene Rings.

8.9 Thioureas.

8.10 Chloroquinolines.

8.11 Stratification of Toxicity.

8.12 Toxicity Prediction: Computational Toxicology.

8.13 Toxicogenomics.

8.14 Enzyme Induction (CYP3A4) and Drug Design.

8.15 Enzyme Inhibition and Drug Design.

9. Inter-Species Scaling.

9.1 Objectives of Inter-Species Scaling.

9.2 Allometric Scaling.

9.2.1 Volume of Distribution.

9.2.2 Clearance.

9.3 Species Scaling: Adjusting for Maximum Life Span Potential.

9.4 Species Scaling: Incorporating Differences in Metabolic Clearance.

9.5 Inter-Species Scaling for Clearance by Hepatic Uptake.

9.6 Elimination Half-Life.

9.7 Scaling to Pharmacological Effect.

9.8 Single Animal Scaling.

10. High(er) throughput ADME Studies.

10.1 The High-Throughput Screening (HTS) Trend.

10.2 Drug Metabolism and Discovery Screening Sequences.

10.3 Physicochemistry.

10.3.1 Solubility.

10.3.2 Lipophilicity.

10.4 Absorption/Permeability.

10.5 Pharmacokinetics.

10.6 Metabolism and Inhibition.

10.7 The Concept of ADME Space.

10.8 Computational Approaches in PK and Metabolism.

10.8.1 QSPR and QSMR.

10.8.2 PK Predictions Using QSAR and Neural Networks.

10.8.3 Is In Silico Meeting Medicinal chemistry Needs in ADME Prediction?

10.8.4 Physiologically-Based Pharmacolinetic (PBPK) Modelling.

10.9 Outlook.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)