BN.com Gift Guide

Photoluminescence Studies Of Single-Walled Carbon Nanotubes

Overview

Photoluminescence spectroscopy has emerged as a powerful technique for characterizing the structure and optical properties of single-walled carbon nanotubes (SWCNT). While SWCNT diameter and chirality information is now routinely available from photoluminescence spectral analysis, the other primary structural parameter, length, has not been measurable except through tedious microscopy. This thesis extends the use of photoluminescence to obtain length information on ensembles of SWCNT in suspension through ...
See more details below
This Paperback is Not Available through BN.com
Sending request ...

More About This Book

Overview

Photoluminescence spectroscopy has emerged as a powerful technique for characterizing the structure and optical properties of single-walled carbon nanotubes (SWCNT). While SWCNT diameter and chirality information is now routinely available from photoluminescence spectral analysis, the other primary structural parameter, length, has not been measurable except through tedious microscopy. This thesis extends the use of photoluminescence to obtain length information on ensembles of SWCNT in suspension through analysis of their optical anisotropy when aligned by the shear of a flowing fluid. The theoretical background and custom-built instrumentation are described and demonstrated to yield analyses comparable to the standard method of atomic force microscopy. A unique benefit of the new method is the resolution of correlations between length and (n,m) structural indices through spectral analysis of the data. The common sample preparation steps of sonication and centrifugation are found to alter the sample length distribution in a diameter-dependent manner. The shear aligned photoluminescence anisotropy method provides a new means for quickly determining the lengths of SWCNT in bulk suspensions and more thoroughly investigating their structural properties. Photoluminescence characterization techniques such as this depend on radiative decay of SWCNT excited states, which occurs with efficiencies below 10%. Nonradiative relaxation is clearly dominant, yet the detailed decay pathways and their relationship to nanotube structure remain essentially unknown. It is currently suspected that optically forbidden states, such as spin triplet states, are a major factor in the low luminescence efficiency of SWCNT. Experimental studies are described involving energy transfer from optically excited porphyrin sensitizers in an attempt to selectively populate such unexplored SWCNT triplet states. Efficient energy transfer is clearly observed in non-covalent SWCNT-porphyrin complexes. Analysis suggests that singlet rather than triplet interactions are dominant in this system. These studies demonstrate efficient electronic coupling between excited states of the nanotube and porphyrin that make such complexes potentially useful as artificial light-harvesting chromophores.
Read More Show Less

Product Details

  • ISBN-13: 9781243615626
  • Publisher: BiblioLabsII
  • Publication date: 9/4/2011
  • Pages: 134
  • Product dimensions: 7.44 (w) x 9.69 (h) x 0.29 (d)

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)