Physical Properties of Quasicrystals

Overview

Quasicrystals are a new form of the solid state which differ from the other two known forms, crystalline and amorphous, by possesing a new type of long-range translational order, called quasiperiodicty, and a noncrystallographic orientational order. This book provides an up-to-date description of the unusual physical properties of these new materials. Emphasis is placed on the experimental results, which are compared with those of the corresponding crystalline and amorphous systems and discussed in terms of ...

See more details below
Paperback (Softcover reprint of the original 1st ed. 1999)
$339.00
BN.com price
Other sellers (Paperback)
  • All (6) from $249.27   
  • New (5) from $249.27   
  • Used (1) from $417.84   
Sending request ...

Overview

Quasicrystals are a new form of the solid state which differ from the other two known forms, crystalline and amorphous, by possesing a new type of long-range translational order, called quasiperiodicty, and a noncrystallographic orientational order. This book provides an up-to-date description of the unusual physical properties of these new materials. Emphasis is placed on the experimental results, which are compared with those of the corresponding crystalline and amorphous systems and discussed in terms of modern theoretical models. Written by leading authorities in the field, the book will be of great use both to experienced workers in the field and to uninitiated graduate students.

Read More Show Less

Product Details

  • ISBN-13: 9783642635939
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 4/30/2013
  • Series: Springer Series in Solid-State Sciences, #126
  • Edition description: Softcover reprint of the original 1st ed. 1999
  • Edition number: 1
  • Pages: 443
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.94 (d)

Table of Contents

1. Introduction.- References.- 2. Metallurgy of Quasicrystals.- 2.1 Introduction.- 2.2 Preparation of Quasicrystals.- 2.2.1 Rapid Solidification.- 2.2.2 Vapor Condensation.- 2.2.3 Mechanical Alloying.- 2.2.4 Crystallization of Melt-Quenched Amorphous Ribbons.- 2.2.5 Conventional Solidification.- 2.3 Structural Classification from Diffraction Patterns.- 2.3.1 Three-Dimensional Quasicrystals.- 2.3.2 Two-Dimensional Quasicrystals.- 2.3.3 One-Dimensional Quasicrystals.- 2.4 Quasicrystalline Alloy Systems and the Formation of Quasicrystals.- 2.4.1 Metastable Quasicrystals.- 2.4.2 Stable Quasicrystals.- 2.4.3 Quasicrystals as Hume-Rothery Phases.- 2.5 Phase Transformation from Amorphous to Icosahedral Phase.- 2.6 Phase Diagrams.- 2.6.1 Al-Li-Cu.- 2.6.2 Al-Cu-Fe.- 2.6.3 Al-Pd-Mn.- 2.6.4 Zn-Mg-Y.- 2.6.5 Al-Ni-Co.- 2.7 Growth of Quasicrystals.- 2.7.1 Morphologies of Quasicrystals.- 2.7.2 Solidification of Quasicrystals.- 2.7.3 Growing Large Single Grains.- 2.8 Summary.- References.- 3. Crystallography of Quasicrystals.- 3.1 Introduction.- 3.2 N-Dimensional Description of Quasicrystals.- 3.2.1 Embedding of Direct and Reciprocal Space.- 3.2.2 Structure Factor.- 3.3 One-Dimensional Quasicrystals.- 3.3.1 Indexing.- 3.3.2 Symmetry.- 3.3.3 Example of a One-Dimensional Quasicrystal:Fibonacci Phase.- 3.4 Decagonal Quasicrystals.- 3.4.1 Indexing.- 3.4.2 Symmetry.- 3.4.3 Example of a Decagonal Phase: Layers of Penrose Tilings.- 3.5 Icosahedral Quasicrystals.- 3.5.1 Indexing.- 3.5.2 Symmetry.- 3.5.3 Example of a Three-Dimensional Quasilattice:Ammann Tiling.- References.- 4. Experimental Determination of the Structure of Quasicrystals.- 4.1 Introduction.- 4.2 X-ray and Neutron Diffraction.- 4.2.1 Patterson Analysis.- 4.2.2 Contrast Variation.- 4.3 Structure of the Al-Pd-Mn Icosahedral Phase.- 4.3.1 Space Group Determination.- 4.3.2 Patterson Analysis.- 4.3.3 First-Order Model.- 4.3.4 About the Resulting Atomic Structure.- 4.3.5 Limitations of the Direct Approach.- 4.3.6 Modeling.- 4.4 Structure of the Al-Ni-Co Decagonal Quasicrystal.- 4.5 Conclusions.- References.- 5. Electronic Transport Properties of Quasicrystals — Experimental Results.- 5.1 Introduction.- 5.1.1 Background.- 5.1.2 Resistance Anomalies.- 5.1.3 Outline.- 5.2 Experimental Results.- 5.2.1 Overview.- 5.2.2 High-Temperature Electrical Resistivity.- 5.2.3 Hall Effect and Thermoelectric Power.- 5.2.4 Icosahedral Approximants.- 5.2.5 Decagonal Quasicrystals.- 5.3 Towards Understanding Transport Properties.- 5.3.1 Strong Sensitivity to Electron Concentration.- 5.3.2 Magnitude of the Electrical Resistivity.- 5.3.3 The Magnetoresistivity.- 5.3.4—(T) at Low and Intermediate Temperatures.- 5.3.5 Is There a Metal-Insulator Transition in Icosahedral Al-Pd-Re?.- 5.4 Concluding Remarks.- References.- 6. Theory of Electronic Structure in Quasicrystals.- 6.1 Introduction.- 6.2 Electronic Structure in One-and Two-Dimensional Quasilattices.- 6.2.1 One-Dimensional Quasilattice: Fibonacci Lattice.- 6.2.2 Two-Dimensional Quasilattice: Penrose Lattice.- 6.3 Electronic Structure in Quasicrystals.- 6.3.1 Method of Calculations: Tight-Binding LMTO and Related Methods.- 6.3.2 Quasi-Brillouin Zone and Modification of DOS of Model Icosahedral Al.- 6.3.3 Electronic Structure in MI-Type Icosahedral Quasicrystals.- 6.3.4 Electronic Structure in TC-Type Icosahedral Quasicrystals.- 6.3.5 Electronic Structure in Decagonal Quasicrystals.- 6.3.6 General Characteristics of DOS and Wave Functions.- 6.3.7 Experimental Study of Electronic Structures.- 6.4 Transport Properties in Quasicrystals.- 6.4.1 Scenario of Transport in Random Systems.- 6.4.2 Experimental Observations.- 6.4.3 Effects of Randomness.- 6.4.4 Boltzmann Theory and Relaxation-Time Approximation.- 6.4.5 Anomalous Diffusion.- 6.4.6 Scaling Behavior.- 6.4.7 Scenario of Transport in Quasicrystals.- 6.5 Summary.- References.- 7. Elementary Excitations and Physical Properties.- 7.1 Introduction.- 7.1.1 Quasiperiodic Structure.- 7.1.2 Physical Properties.- 7.1.3 Spectral Properties of Quasiperiodic Hamiltonians.- 7.2 Quasiperiodicity, Symmetry, and Elementary Excitations.- 7.3 Modelling Quasicrystalline Structures and Approximant Phases.- 7.3.1 Icosahedral Quasicrystals.- 7.3.2 Decagonal Quasicrystals.- 7.3.3 Approximant Structures.- 7.4 Numerical Characterization of Elementary Excitations.- 7.4.1 Direct Diagonalization.- 7.4.2 Real-Space Recursion.- 7.4.3 Comparison With Experiment.- 7.5 Phonons in Quasicrystals.- 7.5.1 Interactomic Force Law and Quasiperiodicity — Modulated Quasicrystals.- 7.5.2 Phonons in Icosahedral Quasicrystals.- 7.5.3 Phonons in Decagonal Quasicrystals.- 7.5.4 Phonons — Summary.- 7.6 Electrons in Quasicrystals.- 7.6.1 s,p-Bonded Icosahedral Alloys as Hume-Rothery Phases.- 7.6.2 Icosahedral and Decagonal Aluminum-Transition Metal Alloys.- 7.6.3 Titanium-Based Quasicrystals.- 7.6.4 Fine Structure of the Electronic Spectrum, Pseudogaps, and Real Gaps.- 7.6.5 Band-Structure Effects in Electronic Transport.- 7.6.6 Magnetic Properties of Quasicrystals.- 7.6.7 Electrons — A Summary.- 7.7 Final Remarks.- References.- 8. Spectroscopic Studies of the Electronic Structure.- 8.1 Introduction.- 8.2 Theoretical Predictions.- 8.2.1 Pseudogap in the Density of States.- 8.2.2 Fine Strucure of the Density of States.- 8.3 Experimental Results.- 8.3.1 s,p-Bonded Icosahedral Alloys.- 8.3.2 Al-Cu-Transition Metal Icosahedral Alloys.- 8.3.3 Al-Pd-Mn Icosahedral Alloys.- 8.3.4 Al-Pd-Re Icosahedral Alloys.- 8.3.5 Al-Co-Cu Decagonal Alloys.- 8.3.6 Al-Ni-Co and Al-Ni-Rh Decagonal Alloys.- 8.3.7 Fine Structure of the Density of States.- 8.4 Uniqueness of the Electronic Structure of Quasicrystals.- 8.5 Quasiperiodicity and Unusual Physical Properties.- 8.6 Conclusions and Outlook.- References.- 9. Magnetic Properties of Quasicrystals.- 9.1 Introduction.- 9.2 Al-Based Quasicrystals.- 9.2.1 Paramagnetism, Effective Magnetic Moment and Saturation Magnetization.- 9.2.2 Fraction of Magnetic Mn Atoms and Giant Magnetic Moment.- 9.2.3 Difference Between Magnetic Moments in Icosahedral and Decagonal Phases.- 9.2.4 Spin-Glass Behavior.- 9.2.5 Low-Temperature Specific Heat.- 9.2.6 Model for Magnetism and Pauling Valence.- 9.2.7 Phasons, Diamagnetism, and Pauli Paramagnetism.- 9.2.8 Ferromagnetism.- 9.3 Mg-RE-Zn Quasicrystals.- 9.3.1 Susceptibility and Spin-Glass Behavior.- 9.3.2 Low-Temperature Specific Heat.- 9.3.3 Antiferromagnetism.- 9.4 Summary.- References.- 10. Surface Science of Quasicrystals.- 10.1 Introduction.- 10.1.1 Background.- 10.1.2 Outline.- 10.2 Oxidized Surfaces.- 10.2.1 Overview.- 10.2.2 Oxide Composition.- 10.2.3 Oxide Depth.- 10.2.4 Comparison to Crystalline Materials.- 10.2.5 Oxide Structure.- 10.2.6 Oxidation-Induced Phase Transformations.- 10.3 Surface Energies.- 10.4 Clean Surfaces.- 10.4.1 Methods of Clean Surface Preparation.- 10.4.2 Surface Composition.- 10.4.3 Surface Structure and Topography.- 10.4.4 Surface Chemistry.- 10.5 Friction.- 10.6 Concluding Remarks.- References.- 11. Mechanical Properties of Quasicrystals.- 11.1 Introduction.- 11.2 Low-Temperature Mechanical Properties.- 11.2.1 Mechanical Property Data.- 11.2.2 Fracture.- 11.3 Dislocations in Quasicrystals.- 11.3.1 Background.- 11.3.2 Dislocations in a Quasilattice.- 11.3.3 Dislocation Analysis.- 11.4 High-Temperature Plastic Deformation.- 11.4.1 Background.- 11.4.2 Theoretical.- 11.4.3 Results of Mechanical Testing.- 11.4.4 Microscopic Observations.- 11.5 Discussion.- 11.5.1 Model of Dislocation Friction in Quasicrystals.- 11.6 Concluding Remarks.- References.- 12. Toward Industrial Applications.- 12.1 Introduction.- 12.2 The Relevant Properties of Quasicrystals.- 12.2.1 Electronic Structure and Transport.- 12.2.2 Visible and Infrared Optical Properties.- 12.2.3 Thermopower.- 12.2.4 Lattice Dynamics.- 12.2.5 Ductility.- 12.2.6 Surface Properties.- 12.2.7 Corrosion Resistance.- 12.2.8 Hydrogen Storage.- 12.3 Possible Applications.- 12.3.1 Coatings.- 12.3.2 Dispersion Hardening of Crystalline, Quasicrystalline, and Amorphous Alloys.- 12.3.3 Selective Absorbers for Solar-Thermal Converters.- 12.3.4 Thermoelectric Devices.- 12.3.5 Hydrogen Storage and Battery Applications.- 12.4 Conclusion.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)