| Preface | xv |
Chapter 1. | Introduction | 1 |
1.1. | The Solar Corona | 2 |
1.1.1. | Brief Overview of the Sun | 2 |
1.1.2. | Optical Observations of the Corona | 4 |
1.1.3. | Soft X-Rays and EUV Lines | 4 |
1.1.4. | Thermal Radio Emissions | 5 |
1.2. | Dynamic Processes | 7 |
1.2.1. | Processes in the Upper Corona | 7 |
1.2.2. | Processes in the Lower Corona | 7 |
1.2.3. | Solar Flares | 8 |
1.2.4. | Other Dynamic Processes | 9 |
1.3. | Stellar Coronae | 11 |
1.3.1. | Soft X-Ray Emission | 11 |
1.3.2. | Stellar Flares | 12 |
1.3.3. | Quiescent Radio Emission | 14 |
1.4. | Fundamental Equations | 15 |
1.4.1. | Magnetohydrodynamic Approach | 17 |
1.4.2. | Kinetic Approach | 18 |
| Further Reading and References | 21 |
Chapter 2. | Basic Concepts | 22 |
2.1. | Single Particle Orbit | 22 |
2.1.1. | Homogeneous Magnetic Field | 22 |
2.1.2. | Inhomogeneous Magnetic Field | 25 |
2.1.3. | Conservation of the Magnetic Moment | 26 |
2.1.4. | Particle Drifts | 27 |
A. | Electric Field | 29 |
B. | Gravitational Field | 29 |
C. | Curved Field Lines | 29 |
2.2. | Particle Trapping in Magnetic Fields | 30 |
2.3. | Generation of Beams | 33 |
2.4. | Debye Shielding | 35 |
2.5. | Charge Oscillations and the Plasma Frequency | 38 |
2.6. | Collisions | 40 |
2.6.1. | Particle Encounters in a Plasma | 40 |
2.6.2. | Fokker-Planck Method | 42 |
2.6.3. | Collision Times | 43 |
A. | Angular Deflection | 43 |
B. | Energy Exchange | 45 |
C. | Momentum Loss | 46 |
D. | Energy Loss | 46 |
E. | Discussion | 48 |
F. | Thermal Collision Times | 49 |
| Exercises | 49 |
| Further Reading and References | 50 |
Chapter 3. | Magnetohydrodynamics | 51 |
3.1. | Basic Statistics | 51 |
3.1.1. | Boltzmann Equation | 51 |
3.1.2. | Velocity Moments of the Boltzmann Equation | 52 |
A. | Conservation of Particles | 53 |
B. | Conservation of Momentum | 53 |
C. | Conservation of Energy | 54 |
3.1.3. | Elementary Magnetohydrodynamics (MHD) | 55 |
A. | MHD Equations and Approximations | 56 |
B. | Electric Fields | 58 |
C. | MHD Properties | 58 |
3.2. | MHD Waves | 61 |
3.2.1. | Linearization | 61 |
3.2.2. | Dispersion Relation and Polarization (Parallel Propagation) | 62 |
3.2.3. | Perpendicular Propagation | 65 |
3.2.4. | General Case | 66 |
| Exercises | 67 |
| Further Reading and References | 68 |
Chapter 4. | Waves in a Cold, Collisionless Plasma | 69 |
4.1. | Approximations and Assumptions | 69 |
4.2. | Cold Plasma Modes | 71 |
4.2.1. | Linearization | 71 |
4.2.2. | Ohm's Law | 73 |
4.2.3. | Dielectric Tensor | 74 |
4.2.4. | Dispersion Relation | 75 |
4.3. | Parallel Waves | 76 |
4.3.1. | Electrostatic Waves | 76 |
4.3.2. | Electromagnetic Waves | 77 |
4.3.3. | Dispersion Relations of the L and R Waves | 78 |
4.3.4. | Resonances at the Gyrofrequencies | 79 |
4.3.5. | Cutoffs Near [omega subscript p] | 80 |
4.4. | Perpendicular Propagation | 81 |
4.4.1. | Electrostatic Waves | 81 |
4.4.2. | Electromagnetic Waves | 82 |
4.5. | Oblique Propagation and Overview | 83 |
4.6. | Beam Mode | 85 |
| Exercises | 87 |
| Further Reading and References | 88 |
Chapter 5. | Kinetic Plasma and Particle Beams | 89 |
5.1. | Radio Observations of Solar Electron Beams | 89 |
5.1.1. | Radio Instruments | 92 |
5.1.2. | Type III Radio Bursts | 93 |
5.2. | Waves and Instability in Kinetic Plasmas | 94 |
5.2.1. | Singularities | 98 |
5.2.2. | Dispersion Relation | 100 |
A. | Principal Part | 100 |
B. | Singular Point | 100 |
5.2.3. | Landau Damping | 101 |
5.2.4. | Bump-on-Tail Instability | 102 |
5.2.5. | Cerenkov Resonance | 103 |
5.2.6. | Ion Acoustic Waves | 104 |
5.2.7. | Thermal Level of Waves | 106 |
5.3. | Plasma Waves in the Solar Corona | 107 |
5.3.1. | Plasma Density | 107 |
5.3.2. | Drift | 108 |
5.3.3. | Field Geometry | 109 |
A. | U-Bursts | 109 |
B. | Magnetic Field Configuration Near Acceleration | 111 |
C. | Interplanetary Space | 111 |
5.3.4. | Decay Time | 112 |
5.3.5. | Other Radio Wave Emitting Beams | 113 |
| Exercises | 113 |
| Further Reading and References | 114 |
Chapter 6. | Astrophysical Electron Beams | 115 |
6.1. | The Beam-Plasma System | 115 |
6.1.1. | Magnetically Driven Return Current | 116 |
6.1.2. | Electrostatic Return Current | 119 |
6.2. | Non-Linear Evolution and Saturation | 120 |
6.2.1. | Quasi-Linear Diffusion | 122 |
6.2.2. | Strong Turbulence | 124 |
6.2.3. | Deflection of Electrostatic Waves | 126 |
6.2.4. | Summary | 127 |
6.3. | Plasma Emission | 127 |
6.3.1. | Harmonics | 127 |
6.3.2. | Phonons and Their Scattering (Wave Conversion) | 129 |
A. | Spontaneous Scattering off Ions | 130 |
B. | Induced Scattering | 131 |
C. | Scattering off Other Waves | 132 |
6.3.3. | Plasma Radiation Emissivities | 135 |
A. | Emission at the Harmonic | 135 |
B. | Emission at the Fundamental: Scattering off Ions | 136 |
C. | Emission at the Fundamental: Decay | 137 |
6.3.4. | Sense of Polarization | 139 |
6.3.5. | Magnetic Field Strength in the Corona | 140 |
6.4. | Hard X-Ray Emission of Beams | 142 |
6.4.1. | Emission Process | 142 |
6.4.2. | Observations | 144 |
6.4.3. | X-Rays from Beams | 145 |
6.4.4. | Radio - Hard X-Ray Association | 147 |
6.4.5. | Diagnostics of the Accelerator | 147 |
A. | Energy of Flare Electrons | 148 |
B. | Fragmentation of Flares | 150 |
| Exercises | 151 |
| Further Reading and References | 152 |
Chapter 7. | Ion Beams and Electromagnetic Instabilities | 154 |
7.1. | Observations of Energetic Ions | 154 |
7.1.1. | Solar Ion Beams | 154 |
7.1.2. | Cosmic Rays | 156 |
7.1.3. | Ion Beams Near Earth | 158 |
7.2. | Electromagnetic Instabilities of Velocity Space Anisotropy | 158 |
7.2.1. | Fire-Hose Instability | 159 |
7.2.2. | Kinetic Instability | 160 |
A. | Dispersion Relation of Transverse Waves in Kinetic Plasma | 160 |
B. | Resonance Condition | 163 |
C. | Wave-Particle Interaction | 164 |
D. | Growth Rate | 166 |
7.3. | Applications to Ion Beams | 168 |
7.3.1. | Instability Threshold | 168 |
7.3.2. | Wave Growth | 169 |
7.3.3. | Ion Beam Propagation | 170 |
A. | Deflection Time | 171 |
B. | Diffusive Propagation | 172 |
7.4. | Electrostatic Ion Beam Instabilities | 174 |
7.4.1. | Low-Frequency Waves | 174 |
7.4.2. | High-Frequency Waves | 175 |
| Exercises | 175 |
| Further Reading and References | 176 |
Chapter 8. | Electrons Trapped in Magnetic Fields | 177 |
8.1. | Observational Motivation | 178 |
8.1.1. | Incoherent Solar Emissions | 178 |
8.1.2. | Synchrotron Emission | 179 |
8.1.3. | Narrowband Spikes | 182 |
8.2. | Loss-Cone Instabilities | 184 |
8.2.1. | Low-Frequency Electromagnetic Instability | 184 |
8.2.2. | High-Frequency Waves and Cyclotron Masers | 186 |
A. | Linear Growth Rates | 186 |
B. | Particles in Resonance | 188 |
C. | Resonance Curve | 190 |
D. | Loss-Cone Instabilities | 191 |
8.3. | Precipitation of Trapped Particles | 194 |
8.3.1. | Weak and Strong Diffusion | 194 |
8.3.2. | Diffusion Time | 195 |
A. | Collisions | 195 |
B. | Quasi-Linear Diffusion | 195 |
8.3.3. | Equilibrium of Quasi-Linear Diffusion | 196 |
8.3.4. | Dominant Waves | 197 |
8.4. | Observations of Trapped Electrons | 198 |
8.4.1. | Injection Dominated | 198 |
8.4.2. | Trapping and Resupply | 198 |
A. | Moving Type IV Bursts | 199 |
B. | Stationary Metric Type IV Bursts | 202 |
C. | Decimetric Bursts | 202 |
8.4.3. | Depletion Dominated | 203 |
8.4.4. | Stellar Emissions by Trapped Electrons | 205 |
A. | Quiescent Radio Emission | 205 |
B. | Stellar Flares | 207 |
| Exercises | 209 |
| Further Reading and References | 210 |
Chapter 9. | Electric Currents | 212 |
9.1. | Origin of Currents in Coronae | 212 |
9.1.1. | MHD Generator | 213 |
9.1.2. | Current Sheet | 214 |
9.2. | Classical Conductivity and Particle Acceleration in Stable Currents | 215 |
9.2.1. | Conductivity | 216 |
9.2.2. | Runaway Electrons | 217 |
9.3. | Instabilities of Electric Currents | 220 |
9.3.1. | Parallel Currents | 220 |
A. | Ion Cyclotron Instability | 220 |
B. | Buneman Instability | 220 |
C. | Ion Acoustic Instability | 221 |
9.3.2. | Perpendicular Currents | 222 |
9.4. | Anomalous Conductivity, Heating, and Acceleration | 223 |
9.4.1. | Anomalous Conductivity | 223 |
9.4.2. | Ohmic Heating | 224 |
9.4.3. | Particle Acceleration | 225 |
A. | Runaway Particles | 225 |
B. | Resonance Acceleration | 226 |
9.5. | Observing Currents | 227 |
9.5.1. | Currents in the Photosphere | 227 |
9.5.2. | Noise Storms | 228 |
9.5.3. | Radio Emission of Low-Frequency Turbulence | 230 |
| Exercises | 232 |
| Further Reading and References | 233 |
Chapter 10. | Collisionless Shock Waves | 234 |
10.1. | Elementary Concepts | 235 |
10.1.1. | Types of Shocks | 235 |
10.1.2. | Conservation Equations (MHD Shocks) | 238 |
10.2. | Collisionless Shocks in the Solar System | 241 |
10.2.1. | Planetary and Cometary Bow Shocks | 241 |
A. | Non-Thermal Particles | 242 |
B. | Upstream Waves | 243 |
10.2.2. | Interplanetary Shocks | 245 |
10.2.3. | Coronal Shocks | 246 |
A. | Coronal Mass Ejection | 246 |
B. | Type II Radio Bursts | 247 |
10.3. | Particle Acceleration and Heating by Shocks | 249 |
10.3.1. | Electron Acceleration at Quasi-Perpendicular Shocks | 249 |
A. | De Hoffmann-Teller Frame | 250 |
B. | Electron Acceleration | 251 |
10.3.2. | Ion Acceleration at Quasi-Parallel Shocks | 253 |
10.3.3. | Resonant Acceleration and Heating by Shocks | 254 |
10.4. | Stochastic Particle Acceleration | 255 |
| Exercises | 257 |
| Further Reading and References | 259 |
Chapter 11. | Propagation of Radiation | 260 |
11.1. | Transfer Equation | 261 |
11.2. | Collisional Absorption | 264 |
11.3. | Dispersion Effects | 266 |
11.3.1. | Geometric Optics | 266 |
11.3.2. | Plasma Dispersion | 268 |
11.3.3. | Faraday Rotation | 269 |
11.3.4. | Quasi-Transverse Regions | 271 |
A. | Mode Coupling in Quasi-Transverse Regions | 272 |
B. | Confrontation with Observations | 274 |
C. | Depolarization | 275 |
11.4. | Scattering at Plasma Inhomogeneities | 275 |
11.5. | Propagation in a Fibrous Medium | 278 |
11.5.1. | Ducting | 279 |
11.5.2. | Anisotropic Scattering | 281 |
| Exercises | 282 |
| Further Reading and References | 283 |
Appendix A. | Mathematical Expressions | 284 |
Appendix B. | Units | 286 |
Appendix C. | Frequently Used Expressions | 287 |
Appendix D. | Notation | 289 |
| Author Index | 292 |
| Subject Index | 295 |