Plasma Etching Processes for CMOS Devices Realization
Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent.Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography.This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization. - Helps readers discover the master technology used to pattern complex structures involving various materials - Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials - Teaches users how etch compensation helps to create devices that are smaller than 20 nm
1132568681
Plasma Etching Processes for CMOS Devices Realization
Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent.Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography.This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization. - Helps readers discover the master technology used to pattern complex structures involving various materials - Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials - Teaches users how etch compensation helps to create devices that are smaller than 20 nm
80.0 In Stock
Plasma Etching Processes for CMOS Devices Realization

Plasma Etching Processes for CMOS Devices Realization

by Nicolas Posseme (Editor)
Plasma Etching Processes for CMOS Devices Realization

Plasma Etching Processes for CMOS Devices Realization

by Nicolas Posseme (Editor)

eBook

$80.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent.Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography.This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization. - Helps readers discover the master technology used to pattern complex structures involving various materials - Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials - Teaches users how etch compensation helps to create devices that are smaller than 20 nm

Product Details

ISBN-13: 9780081011966
Publisher: ISTE Press - Elsevier
Publication date: 01/25/2017
Sold by: Barnes & Noble
Format: eBook
Pages: 136
File size: 10 MB

About the Author

Nicolas Posseme is a Senior Research Scientist in MIcrotechnologie & Nanotechnology and Deputy Head of Plasma Etching & Stripping in the Silicon Technologies division at the CEA-LETI Laboratory in Grenoble, France.

Table of Contents

1. CMOS Devices Through the Years2. Plasma Etching in Microelectronics3. Patterning Challenges in Microelectronics4. Plasma Etch Challenges for Gate Patterning

What People are Saying About This

From the Publisher

Presents a precise understanding of various CMOS devices and the unprecedented etching issues encountered in the microelectronics industry

From the B&N Reads Blog

Customer Reviews