Plasticity and Textures
The classical, phenomenological theory of plastically anisotropic materials has passed a long way: from the work of von Mises presented in 1928, and the HilI formulation given in 1948, to the latest papers on large elastic-plastic deformations of anisotropic metal sheets. A characteristic feature of this approach is a linear flow rule and a quadratic yield criterion. Mathematical simplicity of the theory is a reason of its numerous applications to the analysis of engineering structures during the onset of plastic deformations. However, such an approach is not sufficient for description of the metal forming processes, when a metal element undergoes very large plastic strains. If we take an initially isotropic piece of metal, it becomes plastically anisotropic during the forming process, and the induced anisotropy progressively increases. This fact strongly determines directions of plastic flow, and it leads to an unexpected strain localization in sheet elements. To explain the above, it is necessary to take into account a polycrystalline structure of the metal, plastic slips on slip systems of grains, crystallographic lattice rotations, and at last, a formation of textures and their evolution during the whole deformation process. In short, it is necessary to introduce the plasticity of crystals and polycrystals. The polycrystal analysis shows that, when the advanced plastic strains take place, some privileged crystallographic directions, called a crystallographic texture, occur in the material. The texture formation and evolution are a primary reason for the induced plastic anisotropy in pure metals.
1100011026
Plasticity and Textures
The classical, phenomenological theory of plastically anisotropic materials has passed a long way: from the work of von Mises presented in 1928, and the HilI formulation given in 1948, to the latest papers on large elastic-plastic deformations of anisotropic metal sheets. A characteristic feature of this approach is a linear flow rule and a quadratic yield criterion. Mathematical simplicity of the theory is a reason of its numerous applications to the analysis of engineering structures during the onset of plastic deformations. However, such an approach is not sufficient for description of the metal forming processes, when a metal element undergoes very large plastic strains. If we take an initially isotropic piece of metal, it becomes plastically anisotropic during the forming process, and the induced anisotropy progressively increases. This fact strongly determines directions of plastic flow, and it leads to an unexpected strain localization in sheet elements. To explain the above, it is necessary to take into account a polycrystalline structure of the metal, plastic slips on slip systems of grains, crystallographic lattice rotations, and at last, a formation of textures and their evolution during the whole deformation process. In short, it is necessary to introduce the plasticity of crystals and polycrystals. The polycrystal analysis shows that, when the advanced plastic strains take place, some privileged crystallographic directions, called a crystallographic texture, occur in the material. The texture formation and evolution are a primary reason for the induced plastic anisotropy in pure metals.
109.99 In Stock
Plasticity and Textures

Plasticity and Textures

by W. Gambin
Plasticity and Textures

Plasticity and Textures

by W. Gambin

Hardcover(2002)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The classical, phenomenological theory of plastically anisotropic materials has passed a long way: from the work of von Mises presented in 1928, and the HilI formulation given in 1948, to the latest papers on large elastic-plastic deformations of anisotropic metal sheets. A characteristic feature of this approach is a linear flow rule and a quadratic yield criterion. Mathematical simplicity of the theory is a reason of its numerous applications to the analysis of engineering structures during the onset of plastic deformations. However, such an approach is not sufficient for description of the metal forming processes, when a metal element undergoes very large plastic strains. If we take an initially isotropic piece of metal, it becomes plastically anisotropic during the forming process, and the induced anisotropy progressively increases. This fact strongly determines directions of plastic flow, and it leads to an unexpected strain localization in sheet elements. To explain the above, it is necessary to take into account a polycrystalline structure of the metal, plastic slips on slip systems of grains, crystallographic lattice rotations, and at last, a formation of textures and their evolution during the whole deformation process. In short, it is necessary to introduce the plasticity of crystals and polycrystals. The polycrystal analysis shows that, when the advanced plastic strains take place, some privileged crystallographic directions, called a crystallographic texture, occur in the material. The texture formation and evolution are a primary reason for the induced plastic anisotropy in pure metals.

Product Details

ISBN-13: 9781402002120
Publisher: Springer Netherlands
Publication date: 12/31/2001
Edition description: 2002
Pages: 240
Product dimensions: 6.14(w) x 9.21(h) x 0.36(d)

Table of Contents

1. Introduction.- 2. General principles.- 3. Anisotropic plasticity.- 4. Sources of induced plastic anisotropy.- 5. Plasticity of crystals.- 6. From textures to plastic anisotropy.- 7. Refined models of anisotropic plasticity.- References.
From the B&N Reads Blog

Customer Reviews