Points and Lines: Characterizing the Classical Geometries
The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.
1110932391
Points and Lines: Characterizing the Classical Geometries
The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.
54.99 In Stock
Points and Lines: Characterizing the Classical Geometries

Points and Lines: Characterizing the Classical Geometries

by Ernest E. Shult
Points and Lines: Characterizing the Classical Geometries

Points and Lines: Characterizing the Classical Geometries

by Ernest E. Shult

Paperback(2011)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.

Product Details

ISBN-13: 9783642156267
Publisher: Springer Berlin Heidelberg
Publication date: 12/20/2010
Series: Universitext
Edition description: 2011
Pages: 676
Product dimensions: 6.20(w) x 9.20(h) x 1.60(d)

About the Author

Ernest Shult studied finite groups with Michio Suzuki, and held visiting fellowships at the University of Chicago and the Princeton Institute for Advanced Study in the 1960’s. He continued to contribute to finite groups until he got interested in incidence geometry. In 1987-8, he received a US Scientist Award from the Alexander von Humboldt Foundation in Freiburg Germany.

Table of Contents

I.Basics.- 1 Basics about Graphs.- 2 .Geometries: Basic Concepts.- 3 .Point-line Geometries.-4.Hyperplanes, Embeddings and Teirlinck's Eheory.- II.The Classical Geometries.- 5 .Projective Planes.-6.Projective Spaces.- 7.Polar Spaces.- 8.Near Polygons.- III.Methodology.- 9.Chamber Systems and Buildings.- 10.2-Covers of Chamber Systems.- 11.Locally Truncated Diagram Geometries.-12.Separated Systems of Singular Spaces.- 13 Cooperstein's Theory of Symplecta and Parapolar Spaces.- IV.Applications to Other Lie Incidence Geometries.- 15.Characterizing the Classical Strong Parapolar Spaces: The Cohen-Cooperstein Theory Revisited.- 16.Characterizing Strong Parapolar Spaces by the Relation between Points and Certain Maximal Singular Subspaces.- 17.Point-line Characterizations of the “Long Root Geometries”.- 18.The Peculiar Pentagon Property.
From the B&N Reads Blog

Customer Reviews