Polymers for Energy Storage and Conversion

Overview

One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market

Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a ...

See more details below
Other sellers (Hardcover)
  • All (7) from $58.31   
  • New (6) from $58.31   
  • Used (1) from $169.56   

Overview

One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market

Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for applications in areas such as lithium batteries, photovoltaics, and solar cells.

Polymers for Energy Storage and Conversion:

  • Introduces the structure and properties of polymer hydrogel with respect to its applications for low to intermediate temperature polymer electrolyte-based fuel cells
  • Describes PVAc-based polymer blend electrolytes for lithium batteries
  • Reviews lithium polymer batteries based on ionic liquids
  • Proposes the concept of the solar cell with organic multiple quantum dots (MQDs)
  • Discusses solvent effects in polymer-based organic photovoltaic devices
  • Provides an overview of the properties of the polymers that factor into their use for solar power, whether for niche applications or for large-scale harvesting
  • Reviews the use of macroporous organic polymers as promising materials for energy gas storage

Readership
Materials scientists working with energy materials, polymer engineers, chemists, and other scientists and engineers working with photovoltaics and batteries as well as in the solar and renewable energy sectors.

Read More Show Less

Product Details

Meet the Author

Vikas Mittal is currently an assistant professor in the Department of Chemical Engineering at The Petroleum Institute in Abu Dhabi. He obtained his PhD in 2006 from the Swiss Federal Institute of Technology in Zurich, Switzerland. He also worked as a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. His research interests include polymer nanocomposites, compatibilization of organic and inorganic materials, polymer colloids, thermal stability studies, and anti-corrosion coatings. He has published more than fifty journal publications, authored as well as edited several books on these subjects.

Read More Show Less

Table of Contents

Preface ix

List of Contributors xi

1 High Performance Polymer Hydrogel based Materials for Fuel Cells 1

1.1 Introduction 1

1.2 Hydrogel Electrolyte 3

1.3 Poly(vinyl alcohol) Hydrogel 4

Summary 19

References 20

2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries 27

2.1 Introduction 27

Conclusion 49

References 49

3 Lithium Polymer Batteries Based on Ionic Liquids 53

3.1 Lithium Batteries 54

3.2 Lithium Polymer Batteries Containing Ionic Liquids 61

Battery Performance 88

Glossary 94

References 96

4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics 103

4.1 Introduction 104

4.2 Molecular Layer Deposition 105

4.3 Concept of Solar Cells with Organic Quantum Dots 107

4.4 Polymer Multiple Quantum Dots 110

4.5 Molecular Multiple Quantum Dots 120

4.6 Waveguide-Type Solar Cells 127

4.7 Summary 135

References 135

5 Solvent Effects in Polymer Based Organic Photovoltaics 137

5.1 Introduction 137

5.2 Solar Cell Device Structure and Prepartion 139

5.3 Spin-Coating of Active Layer 141

5.4 Influence of Solvent on Morphology 143

5.5 Residual Solvent 152

5.6 Summary 156

Acknowledgment 157

References 157

6 Polymer-Inorganic Hybrid Solar Cells 163

6.1 Introduction 163

6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites 173

6.3 Conclusion 185

References 191

7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells 199

7.1 Introduction 199

7.2 Optical Properties of Semiconducting Polymers 200

7.3 Electrical Properties of Semiconducting Polymers 206

7.4 Mechanical Properties Polymer Solar Cells 208

7.5 Processing of Polymers 210

7.6 State-of-the-art of the Technology 212

References 213

8 Energy Gas Storage in Porous Polymers 215

8.1 Introduction 216

8.2 Microporous Organic Polymers 217

8.3 Characterization of MOPs 239

Conclusion 242

List of Abbreviation 242

References 243

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)