Positive Semigroups of Operators, and Applications
This means that semigroup theory may be applied directly to the study of the equation I'!.f = h on M. In [45] Yau proves that, for h ~ 0, there are no nonconstant, nonnegative solutions f in [j' for 1 < p < 00. From this, Yau gets the geometric fact that complete noncom pact Riemannian manifolds with nonnegative Ricci curvature must have infinite volume, a result which was announced earlier by Calabi [4]. 6. Concluding Remarks In several of the above results, positivity of the semigroup plays an important role. This was also true, although only implicitly, for the early work of Hille and Yosida on the Fokker-Planck equation, i.e., Equation (4) with c = O. But it was Phillips [41], and Lumer and Phillips [37] who first called attention to the importance of dissipative and dispersive properties of the generator in the context of linear operators in a Banach space. The generation theorems in the Batty-Robinson paper appear to be the most definitive ones, so far, for this class of operators. The fundamental role played by the infinitesimal operator, also for the understanding of order properties, in the commutative as well as the noncommutative setting, are highlighted in a number of examples and applications in the different papers, and it is hoped that this publication will be of interest to researchers in a broad spectrum of the mathematical sub-divisions.
1117008963
Positive Semigroups of Operators, and Applications
This means that semigroup theory may be applied directly to the study of the equation I'!.f = h on M. In [45] Yau proves that, for h ~ 0, there are no nonconstant, nonnegative solutions f in [j' for 1 < p < 00. From this, Yau gets the geometric fact that complete noncom pact Riemannian manifolds with nonnegative Ricci curvature must have infinite volume, a result which was announced earlier by Calabi [4]. 6. Concluding Remarks In several of the above results, positivity of the semigroup plays an important role. This was also true, although only implicitly, for the early work of Hille and Yosida on the Fokker-Planck equation, i.e., Equation (4) with c = O. But it was Phillips [41], and Lumer and Phillips [37] who first called attention to the importance of dissipative and dispersive properties of the generator in the context of linear operators in a Banach space. The generation theorems in the Batty-Robinson paper appear to be the most definitive ones, so far, for this class of operators. The fundamental role played by the infinitesimal operator, also for the understanding of order properties, in the commutative as well as the noncommutative setting, are highlighted in a number of examples and applications in the different papers, and it is hoped that this publication will be of interest to researchers in a broad spectrum of the mathematical sub-divisions.
54.99 In Stock
Positive Semigroups of Operators, and Applications

Positive Semigroups of Operators, and Applications

Positive Semigroups of Operators, and Applications

Positive Semigroups of Operators, and Applications

Paperback(Softcover reprint of the original 1st ed. 1984)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This means that semigroup theory may be applied directly to the study of the equation I'!.f = h on M. In [45] Yau proves that, for h ~ 0, there are no nonconstant, nonnegative solutions f in [j' for 1 < p < 00. From this, Yau gets the geometric fact that complete noncom pact Riemannian manifolds with nonnegative Ricci curvature must have infinite volume, a result which was announced earlier by Calabi [4]. 6. Concluding Remarks In several of the above results, positivity of the semigroup plays an important role. This was also true, although only implicitly, for the early work of Hille and Yosida on the Fokker-Planck equation, i.e., Equation (4) with c = O. But it was Phillips [41], and Lumer and Phillips [37] who first called attention to the importance of dissipative and dispersive properties of the generator in the context of linear operators in a Banach space. The generation theorems in the Batty-Robinson paper appear to be the most definitive ones, so far, for this class of operators. The fundamental role played by the infinitesimal operator, also for the understanding of order properties, in the commutative as well as the noncommutative setting, are highlighted in a number of examples and applications in the different papers, and it is hoped that this publication will be of interest to researchers in a broad spectrum of the mathematical sub-divisions.

Product Details

ISBN-13: 9789400964860
Publisher: Springer Netherlands
Publication date: 10/13/2011
Edition description: Softcover reprint of the original 1st ed. 1984
Pages: 202
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Positive Semigroups of Operators, and Applications: Editors’ Introduction.- Positive One-Parameter Semigroups on Ordered Banach Spaces.- Asymptotic Behavior of One-Parameter Semigroups of Positive Operators.- Positivity in Time Dependent Linear Transport Theory.- Quantum Dynamical Semigroups, Symmetry Groups, and Locality.- Shastic Dilations of Uniformly Continuous Completely Positive Semigroups.- Order Properties of Attractive Spin Systems.- Book Reviews:.- E. B. Davies: One-Parameter Semigroups (William G. Faris).- Publications Received.- Announcement.
From the B&N Reads Blog

Customer Reviews