Predictive Business Analytics: Forward Looking Capabilities to Improve Business Performance

Overview

Praise for Predictive Business Analytics

"Maisel and Cokins have provided a highly readable account of the feasibility and power of predictive analytics. Implementing the book's ideas will definitely help companies make better data-driven decisions."
—Robert S. Kaplan, co-developer of Balanced Scorecard and Activity-Based Costing and Professor Emeritus, Harvard Business School

"A simple how-to guide supported by practical case studies to implement a powerful process. In the ...

See more details below
Other sellers (Hardcover)
  • All (11) from $28.95   
  • New (10) from $28.95   
  • Used (1) from $34.01   
Predictive Business Analytics: Forward Looking Capabilities to Improve Business Performance

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$28.49
BN.com price
(Save 42%)$49.95 List Price

Overview

Praise for Predictive Business Analytics

"Maisel and Cokins have provided a highly readable account of the feasibility and power of predictive analytics. Implementing the book's ideas will definitely help companies make better data-driven decisions."
—Robert S. Kaplan, co-developer of Balanced Scorecard and Activity-Based Costing and Professor Emeritus, Harvard Business School

"A simple how-to guide supported by practical case studies to implement a powerful process. In the dynamic economic environment we find ourselves in, having actionable analytics, based on facts and data supporting our decisions, increases our chances of making the best decisions."
—Jeffrey Nachowitz, VP Global Technology & Operations, MetLife

"Finally a book that 'connects the dots' on predictive analytics as a necessary and useful tool for CFOs interested in having a competitive advantage. Kudos to Maisel and Cokins for superbly addressing a topic long overdue."
—C. S. "Bud" Kulesza, CMA, CFM, leadership expert, Dean Emeritus, IMA Leadership Academy

"Cokins and Maisel paint a rich picture of the potential uses and pitfalls of predictive business analytics and provide a practical framework for implementing an analytics program. Both current and aspiring analytical practitioners will gain much insight and confidence by reading Predictive Business Analytics."
—Wayne Eckerson, President, BI Leader Consulting, and author of Secrets of Analytical Leaders: Insights from Information Insiders

"Larry and Gary are right on target in their evaluation of the power of predictive modeling in business analytics as the new wave that will sweep through businesses to drive and inform the decision-making process. This is a must-read for decision makers who will ride this wave into the future."
—Mitchell Blaser, Chief Operating Officer, Ironshore Inc.

"Larry and Gary have laid out a set of business principles for applying predictive analytics, with an emphasis on how to integrate predictive analytics with the accounting and budgeting functions so central to any large organization. This emphasis, combined with their focus on the need to make better decisions and on using analytics to change a business not just monitor it, makes Predictive Business Analytics a great read."
—James Taylor, CEO, Decision Management Solutions, and author of Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics

Read More Show Less

Product Details

  • ISBN-13: 9781118175569
  • Publisher: Wiley
  • Publication date: 10/14/2013
  • Series: Wiley and SAS Business Series
  • Edition number: 1
  • Pages: 272
  • Sales rank: 549,394
  • Product dimensions: 6.10 (w) x 9.10 (h) x 1.10 (d)

Meet the Author

LAWRENCE S. Maisel, President of DecisionVu, specializes in corporate performance management, financial management, and IT value management. He has extensive industry experiences with numerous Global 1000 companies including MetLife, TIAA-CREF, Citigroup, GE, Bristol-Myers, Pfizer, and News Corp/Fox Entertainment. Larry co-created with Drs. Kaplan and Norton the Balanced Scorecard Approach, and co-authored with Drs. Kaplan and Cooper Implementing Activity-Based Cost Management. He is a CPA, holds a BA from NYU and an MBA from Pace University, and was an adjunct professor at Columbia University's Graduate Business School. Contact him at LMaisel@DecisionVu.com.

GARY COKINS is the founder of Analytics-Based Performance Management, LLC. He is an internationally recognized expert, speaker, and author in advanced cost management and performance improvement systems. He served fifteen years as a consultant with Deloitte Consulting, KPMG, and Electronic Data Systems (EDS, now part of HP). From 1997 until recently, Gary was in business development with SAS, a leading provider of enterprise performance management and business analytics and intelligence software. He has a degree in operations research from Cornell University and an MBA from Northwestern University Kellogg School of Management. Contact him at gcokins@garycokins.com.

Read More Show Less

Table of Contents

Preface xv

Part One “Why” 1

Chapter 1 Why Analytics Will Be the Next Competitive Edge 3

Analytics: Just a Skill, or a Profession? 4

Business Intelligence versus Analytics versus Decisions 5

How Do Executives and Managers Mature in Applying Accepted Methods? 6

Fill in the Blanks: Which X Is Most Likely to Y? 6

Predictive Business Analytics and Decision Management 7

Predictive Business Analytics: The Next “New” Wave 9

Game-Changer Wave: Automated Decision-Based Management 10

Preconception Bias 11

Analysts’ Imagination Sparks Creativity and Produces Confidence 12

Being Wrong versus Being Confused 12

Ambiguity and Uncertainty Are Your Friends 14

Do the Important Stuff First—Predictive Business Analytics 16

What If . . . You Can 17

Notes 19

Chapter 2 The Predictive Business Analytics Model 21

Building the Business Case for Predictive Business Analytics 27

Business Partner Role and Contributions 28

Summary 29

Notes 29

Part Two Principles and Practices 31

Chapter 3 Guiding Principles in Developing Predictive Business Analytics 33

Defining a Relevant Set of Principles 34

PRINCIPLE 1: Demonstrate a Strong Cause-and-Effect Relationship 34

PRINCIPLE 2: Incorporate a Balanced Set of Financial and

Nonfinancial, Internal and External Measures 36

PRINCIPLE 3: Be Relevant, Reliable, and Timely for Decision Makers 37

PRINCIPLE 4: Ensure Data Integrity 38

PRINCIPLE 5: Be Accessible, Understandable, and Well Organized 39

PRINCIPLE 6: Integrate into the Management Process 39

PRINCIPLE 7: Drive Behaviors and Results 40

Summary 41

CHAPTER 4 Developing a Predictive Business Analytics Function 43

Getting Started 44

Selecting a Desired Target State 46

Adopting a PBA Framework 49

Developing the Framework 49

Summary 60

Notes 60

CHAPTER 5 Deploying the Predictive Business Analytics Function 61

Integrating Performance Management with Analytics 63

Performance Management System 64

Implementing a Performance Scorecard 67

Management Review Process 76

Implementation Approaches 78

Change Management 80

Summary 81

Notes 82

Part Three Case Studies 83

CHAPTER 6 MetLife Case Study in Predictive Business Analytics 85

The Performance Management Program 88

Implementing the MOR Program 93

Benefi ts and Lessons Learned 108

Summary 108

Notes 108

CHAPTER 7 Predictive Performance Analytics in the Biopharmaceutical Industry 109

Case Studies 113

Summary 127

Note 127

Part Four Integrating Business Methods and Techniques 129

CHAPTER 8 Why Do Companies Fail (Because of Irrational Decisions)? 131

Irrational Decision Making 131

Why Do Large, Successful Companies Fail? 132

From Data to Insights 134

Increasing the Return on Investment from Information Assets 135

Emerging Need for Analytics 136

Summary 137

Notes 138

CHAPTER 9 Integration of Business Intelligence, Business Analytics, and Enterprise Performance Management 139

Relationship among Business Intelligence, Business Analytics, and Enterprise Performance Management 140

Overcoming Barriers 143

Summary 144

Notes 145

CHAPTER 10 Predictive Accounting and Marginal Expense Analytics 147

Logic Diagrams Distinguish Business from Cost Drivers 148

Confusion about Accounting Methods 150

Historical Evolution of Managerial Accounting 152

An Accounting Framework and Taxonomy 153

What? So What? Then What? 156

Coexisting Cost Accounting Methods 159

Predictive Accounting with Marginal Expense Analysis 160

What Is the Purpose of Management Accounting? 160

What Types of Decisions Are Made with Managerial Accounting Information? 161

Activity-Based Cost/Management as a Foundation for Predictive Business Accounting 164

Major Clue: Capacity Exists Only as a Resource 165

Predictive Accounting Involves Marginal Expense Calculations 166

Decomposing the Information Flows Figure 169

Framework to Compare and Contrast Expense Estimating Methods 172

Predictive Costing Is Modeling 173

Debates about Costing Methods 174

Summary 175

Notes 175

CHAPTER 11 Driver-Based Budget and Rolling Forecasts 177

Evolutionary History of Budgets 180

A Sea Change in Accounting and Finance 182

Financial Management Integrated Information Delivery Portal 183

Put Your Money Where Your Strategy Is 185

Problem with Budgeting 185

Value Is Created from Projects and Initiatives, Not the Strategic Objectives 187

Driver-Based Resource Capacity and Spending Planning 189

Including Risk Mitigation with a Risk Assessment Grid 190

Four Types of Budget Spending: Operational, Capital, Strategic, and Risk 192

From a Static Annual Budget to Rolling Financial Forecasts 194

Managing Strategy Is Learnable 195

Summary 195

Notes 196

Part Five Trends and Organizational Challenges 197

CHAPTER 12 CFO Trends 199

Resistance to Change and Presumptions of Existing Capabilities 199

Evidence of Defi cient Use of Business Analytics in Finance and Accounting 201

Sobering Indication of the Advances Yet Needed by the CFO Function 202

Moving from Aspirations to Practice with Analytics 203

Approaching Nirvana 210

CFO Function Needs to Push the Envelope 210

Summary 215

Notes 216

CHAPTER 13 Organizational Challenges 217

What Is the Primary Barrier Slowing the Adoption Rate of Analytics? 219

A Blissful Romance with Analytics 220

Why Does Shaken Confidence Reinforce One’s Advocacy? 221

Early Adopters and Laggards 222

How Can One Overcome Resistance to Change? 224

The Time to Create a Culture for Analytics Is Now 226

Predictive Business Analytics: Nonsense or Prudence? 227

Two Types of Employees 227

Inequality of Decision Rights 228

What Factors Contribute to Organizational Improvement? 229

Analytics: The Skeptics versus the Enthusiasts 229

Maximizing Predictive Business Analytics: Top-Down or Bottom-Up Leadership? 234

Analysts Pursue Perceived Unachievable Accomplishments 235

Analysts Can Be Leaders 236

Summary 237

Notes 237

About the Authors 239

Index 243

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)