Preparation And Characterization Of Carbon Nanofiber-Polymide Composites.

Overview

Carbon nanofibers (CNFs) are potentially excellent reinforcements in polymer-based composites due to very good mechanical properties, thermal and electrical conductivity, and low cost to manufacture. The dispersion of fibers and the interfacial interaction with the polymer matrix need to be improved for CNF composites to achieve this potential. Treatment of the nanofiber surface with groups that are compatible with the polymer is key to addressing these issues. Attached functional groups may enhance the adhesion ...
See more details below
Paperback
$66.50
BN.com price
(Save 3%)$69.00 List Price
Other sellers (Paperback)
  • All (2) from $72.00   
  • New (2) from $72.00   
Sending request ...

More About This Book

Overview

Carbon nanofibers (CNFs) are potentially excellent reinforcements in polymer-based composites due to very good mechanical properties, thermal and electrical conductivity, and low cost to manufacture. The dispersion of fibers and the interfacial interaction with the polymer matrix need to be improved for CNF composites to achieve this potential. Treatment of the nanofiber surface with groups that are compatible with the polymer is key to addressing these issues. Attached functional groups may enhance the adhesion between reinforcement phase and matrix phase and reduce the slip of polymer chains on the surfaces of fibers. As a result, load can be transferred to fibers efficiently. In this investigation, CNFs were used as reinforcements in a polyimide (PI) matrix to produce a composite. To improve dispersion of fibers as well as interfacial adhesion, oxidized carbon nanofibers (OCNFs) were functionalized by covalently attaching 1,4-phenylenediamine (1,4-PDA) or polyimide oligomer to the surfaces. The functionalization with diamine was carried out either through direct reaction with OCNFs in dimethylacetimide (DMAc) solvent or through a two-step approach in which oxidized fibers were reacted with thionyl chloride (SOCl2) to improve surface reactivity followed by reaction with PDA in DMAc. The PDA was successfully bonded to the surfaces of fibers using both strategies. The further attachment of oligomer proceeded as expected in DMAc. The functionalized CNFs were characterized using Raman spectroscopy, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the functionalization reaction. Raman spectra and XPS spectra qualitatively indicated target chemical bonds were formed in each reaction step. Quantifications of TGA and XPS consistently supported that desired chemical moieties were present on the surfaces of fibers. In short, the interfaces of fibers were tailored with groups that would mimic the structure of polyimide and can interact with polymer. However, XPS indicated that approximately one percent of the carbon atoms on the CNF surface reacted with diamine, which was derivatized from scarce reactive oxygen groups available on the OCNFs. Polyimide based composites were produced using either blending CNFs assisted by sonication or in-situ polymerization. Pristine fibers, oxidized fibers and fibers functionalized with PDA and polyimide oligomer were incorporated into the polyimide matrix, respectively. The goal was to investigate the effect of surface functional groups and the approach to form composite on the dispersion of fibers in the matrix and on the tensile strength and thermal mechanical properties. Scanning electron microscope (SEM) images showed that pristine fibers had poor dispersion in which agglomerations and a bottom-settled layer of fibers were observed, while there were few agglomerations of any other type of fibers formed in the matrix. Blending in hot DMAc and in-situ polymerization were found to disperse fibers well in the polyimide matrix. Functionalized fiber-PI composites exhibited improvement in glass transition temperature (Tg), modulus and tensile strength. In addition, the impact of fiber loadings from 0.5% to 5.0% by weight in composite was investigated. There was about a 10°C increase in Tg even at very low fiber concentration of 0.5 wt%. The modulus of the composites prepared in this study was as high as 130% of that of base PI. While functionalized fibers effectively enhanced the modulus and tensile strength of composites, pristine fibers exhibited little reinforcement to the host PI at low concentration (0.5 wt% and 1.5 wt%) and adversely affected the properties...
Read More Show Less

Product Details

  • ISBN-13: 9781243522979
  • Publisher: BiblioLabsII
  • Publication date: 9/3/2011
  • Pages: 190
  • Product dimensions: 7.44 (w) x 9.69 (h) x 0.40 (d)

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)