Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature by Ira Flatow, Paperback | Barnes & Noble
Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature
  • Alternative view 1 of Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature
  • Alternative view 2 of Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature

Present at the Future: From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature

by Ira Flatow
     
 

View All Available Formats & Editions

Veteran NPR® science reporter and award-winning radio and TV journalist Ira Flatow’s enthusiasm for all things scientific has made him a beloved on-air correspondent. For more than thirty-five years, Flatow has interviewed the top scientists and researchers on many NPR and PBS programs, including his popular Science Friday

Overview

Veteran NPR® science reporter and award-winning radio and TV journalist Ira Flatow’s enthusiasm for all things scientific has made him a beloved on-air correspondent. For more than thirty-five years, Flatow has interviewed the top scientists and researchers on many NPR and PBS programs, including his popular Science Friday® spot on Talk of the Nation. In Present at the Future, he shares the groundbreaking revelations from those conversations, including the latest on nanotechnology, space travel, global warming, alternative energies, stem cell research, and using the universe as a super-duper computer. Flatow also further explores his favorite topic, the science of everyday life, with explanations on why the shower curtain sticks to you, the real story of why airplanes fly, and much more.

From dark matter and the human consciousness to the surprising number of scientists who believe in a Creator, Present at the Future reveals the mysteries of science, nature, and technology that shape our lives.

Editorial Reviews

Kirkus Reviews
From his vantage point as host of NPR's popular radio show Science Friday, Flatow (They All Laughed...From Light Bulbs to Lasers: The Fascinating Stories Behind the Great Inventions That Have Changed Our Lives, 1992, etc.) has acquired an impressive overview of current science. Unfortunately, this book fails to go beyond that overview. The book is divided into 12 chapters: new research on the brain, cosmology, climate change, alternate energies, nanotechnology, space travel, ocean life, the science versus religion controversy, scientific pioneers, the future of cyberspace, new approaches to science and the pros and cons of stem-cell research. By covering such broad terrain, the author sets himself the nearly impossible task of adequately exploring each concept. Lacking footnotes or a bibliography, it may be difficult for readers to seek further reading on any of the included subjects. The book's strength lies in the author's balanced coverage of controversial issues, such as the feasibility of switching to biofuels or using nuclear energy as a replacement for gasoline. The high point is Flatow's discussion of why planes fly, based on NASA researcher Norman Smith's crusade to substitute Newton's third law of motion for Bernoulli's principle. Many of the interviews cover intriguing, cutting-edge material-including a discussion of quantum computers with Seth Lloyd, a professor of mechanical engineering at MIT, and quantum gravitation with Lee Smolin, a research physicist at the Perimeter Institute. But other parts of the book feel dated, such as the section covering memory and the effects of age on the brain, conducted with Dr. Aaron P. Nelson, chief of neuropsychology at Brigham and Women'sHospital in Boston and assistant professor at Harvard Medical School. Flatow certainly has a knack for finding the appropriate professionals to discuss each topic, but the resulting narrative will likely confuse newbies and frustrate more knowledgeable readers. A disappointingly superficial book about a number of fascinating subjects. Agent: Jonathon Lazear/Lazear Agency

Product Details

ISBN-13:
9780060732653
Publisher:
HarperCollins Publishers
Publication date:
08/26/2008
Edition description:
Reprint
Pages:
384
Product dimensions:
5.30(w) x 7.90(h) x 1.00(d)

Read an Excerpt

Present at the Future
From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature

Chapter One

The Mind's Window

A Fox enters the storeroom of a theater. Rummaging through the contents, he is frightened by a face glaring down on him. But looking at it closely he discovers it is only a mask, of the kind worn by actors. "You look very fine," says the Fox. "It is a pity you haven't any brains."
—Aesop's Fables

Is it possible to understand our minds? To understand what consciousness is all about? What happens in our brains when we learn or remember? What goes on when we "enjoy" or feel "depressed?"

Understanding the complex biochemistry that turns electrical and chemical energy into thoughts, memories, and feelings is one of the greatest challenges of science. Neuroscience has become "the neurosciences" as genetics, physics and engineering, pharmaceuticals, psychology and psychiatry, and computer science have gotten into the act and contributed to what we know. But the brain is so complex that neuroscientists have a long way to go before we can understand completely how the brain works.

We know that people have been fascinated with the brain for at least 6,000 years. About 4,000 BC, an anonymous writer put down the very first observations of how the brain works, anticipating The Wonderful Wizard of Oz by noting that eating poppies induced feelings of euphoria and well-being. It seems that people also have always been hitting their heads: The ancient Egyptians documented on papyrus medical treatments for 26 different kinds of braininjury, and pre-Inca civilizations practiced primitive brain surgery, probably for mental illnesses, headaches, or epilepsy. In the Middle Ages, many people witnessed miracles, wonders, and visions—perhaps because they didn't realize that their brains were tripping on LSD. In 1938, Dr. Albert Hofmann, a distinguished Swiss chemist who was interested in the medicinal properties of plants, was studying the ergot fungus at Sandoz Pharmaceuticals in Basel. He found that ergot contained a kind of lysergic acid with hallucinatory properties, an acid that Hofmann synthesized into LSD for the first time. Ergot fungus often affects grain. In medieval times, grain with the fungus could have been milled into rye bread, causing hallucinations—and along with them, superstitions and religious fervor that could have been due to altered brain chemistry.

Today, we know that the brain runs on electricity—though not the kind of electricity that lights up the lamp over my desk or runs my computer. I'm talking about bioelectricity, which allows the neurons, or cells in the brain, to communicate with one another. Every living cell functions with electricity. When food is digested and turned into blood sugar, or glucose, and dissolves in water inside a cell, its atoms lose or gain electrons. They become free-floating particles called ions, which have either a positive or a negative charge. Since electricity is charge in motion, the movement of charged ions inside a living cell is electricity. When ions move, there is a corresponding shift in charge, an electrochemical change that produces an electric charge, the nerve signal. Every fraction of a second, each nerve cell in the brain and body receives signals that prompt it to respond or not. When a neuron sends a message to another neuron, the signal moves along as a traveling electric pulse. Recently I saw a photo of a neuron hooked up to a nanoscale plastic circuit on a chip—just one experiment in nanotechnologists' efforts to build a super-tiny transistor no bigger than a molecule.

While ancient peoples thought that epilepsy was caused by demonic possession, we know that an epileptic seizure is an outward sign of abnormal electrical activity in the brain, due to an imbalance in neural activity that leads to an increase in the rate of neural firing, which can then spread to other parts of the brain. But there are still so many mysteries left, especially how our memories, our hopes and dreams, our intelligence, and everything else we're thinking of when we say mind are encoded in our brains.

Making Connections

One of the biggest mysteries about the brain is how it begins. When a fetus is only one month old, its first brain cells, or neurons, are growing at the mind-boggling rate of 250,000 neurons a minute. Eventually, those neurons form literally trillions of connections, called synapses, between cells. These connections are well organized, not random: Each neuron finds its correct place in the brain. By the time a baby is born, it has 100 billion neurons, and its brain looks very much like an adult's. It's more developed than any other part of the baby's body, and it's disproportionately large. After birth, the brain begins to be shaped by environment—the world around the infant and the baby's experiences. Newborns spend more than 20 percent of their sleep in rapid eye movement (REM) sleep, which some researchers think involves a kind of learning process. Neurologists are studying how the brain shapes itself in response to the demands the environment makes on it. They know the brain changes over a person's lifetime, as it thinks, controls muscles and limbs, learns, and remembers. The billions of neurons in a person's brain continually connect and reconnect on many different levels, in response to what their owner does and experiences.

Some of the things we don't know about the brain are surprisingly basic. One thing that babies and very young children do a lot is sleep. In fact, they spend half their childhood asleep—and every parent knows how important that is and what their kids can be like if they don't get their naps. Adults spend about a third of their time asleep, and that doesn't appear to be an enormous waste of valuable time. Experiments where people have tried to stay awake for as long as 200 hours have induced hallucinations and paranoia. If adults have troubling sleeping—and according to a 2005 poll from the National Sleep Foundation, 57 percent of Americans do—nearly every aspect of their lives is affected, leaving them prone to making mistakes at work, having car accidents, being too sleepy for sex.

Present at the Future
From Evolution to Nanotechnology, Candid and Controversial Conversations on Science and Nature
. Copyright © by Ira Flatow. Reprinted by permission of HarperCollins Publishers, Inc. All rights reserved. Available now wherever books are sold.

Meet the Author

Ira Flatow is the host and executive producer of Talk of the Nation: Science Friday®. He is the author of Rainbows, Curve Balls, and They All Laughed. He lives in Connecticut.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >