Privacy-Preserving Data Mining: Models and Algorithms
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.

Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and prools for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.

This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.

Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.

1101515831
Privacy-Preserving Data Mining: Models and Algorithms
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.

Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and prools for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.

This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.

Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.

239.0 Out Of Stock
Privacy-Preserving Data Mining: Models and Algorithms

Privacy-Preserving Data Mining: Models and Algorithms

Privacy-Preserving Data Mining: Models and Algorithms

Privacy-Preserving Data Mining: Models and Algorithms

Paperback(Softcover reprint of hardcover 1st ed. 2008)

$239.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.

Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and prools for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.

This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.

Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.


Product Details

ISBN-13: 9781441943712
Publisher: Springer US
Publication date: 11/19/2010
Series: Advances in Database Systems , #34
Edition description: Softcover reprint of hardcover 1st ed. 2008
Pages: 514
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

An Introduction to Privacy-Preserving Data Mining.- A General Survey of Privacy-Preserving Data Mining Models and Algorithms.- A Survey of Inference Control Methods for Privacy-Preserving Data Mining.- Measures of Anonymity.- k-Anonymous Data Mining: A Survey.- A Survey of Randomization Methods for Privacy-Preserving Data Mining.- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining.- A Survey of Quantification of Privacy Preserving Data Mining Algorithms.- A Survey of Utility-based Privacy-Preserving Data Transformation Methods.- Mining Association Rules under Privacy Constraints.- A Survey of Association Rule Hiding Methods for Privacy.- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries.- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data.- A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data.- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods.- Private Data Analysis via Output Perturbation.- A Survey of Query Auditing Techniques for Data Privacy.- Privacy and the Dimensionality Curse.- Personalized Privacy Preservation.- Privacy-Preserving Data Stream Classification.
From the B&N Reads Blog

Customer Reviews