Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks / Edition 1

Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks / Edition 1

5.0 1
by Robert G. Cowell, Philip Dawid, Steffen L. Lauritzen, David J. Spiegelhalter
     
 

Winner of the 2002 DeGroot Prize.

Probabilistic expert systems are graphical networks that support the modelling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors over a number of years, this book gives a thorough and rigorous mathematical treatment of the underlying ideas,

See more details below

Overview

Winner of the 2002 DeGroot Prize.

Probabilistic expert systems are graphical networks that support the modelling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors over a number of years, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms, emphasizing those cases in which exact answers are obtainable. It covers both the updating of probabilistic uncertainty in the light of new evidence, and statistical inference, about unknown probabilities or unknown model structure, in the light of new data. The careful attention to detail will make this work an important reference source for all those involved in the theory and applications of probabilistic expert systems.

This book was awarded the first DeGroot Prize by the International Society for Bayesian Analysis for a book making an important, timely, thorough, and notably original contribution to the statistics literature.

Robert G. Cowell is a Lecturer in the Faculty of Actuarial Science and Insurance of the Sir John Cass Business School, City of London. He has been working on probabilistic expert systems since 1989.

A. Philip Dawid is Professor of Statistics at Cambridge University. He has served as Editor of the Journal of the Royal Statistical Society (Series B), Biometrika and Bayesian Analysis, and as President of the International Society for Bayesian Analysis. He holds the Royal Statistical Society Guy Medal in Bronze and in Silver, and the Snedecor Award for the Best Publication in Biometry.

Steffen L. Lauritzen is Professor of Statistics at the University of Oxford. He has served as Editor of the Scandinavian Journal of Statistics. He holds the Royal Statistical Society Guy Medal in Silver and is an Honorary Fellow of the same society. He has, jointly with David J. Spiegelhalter, received the American Statistical Association’s award for an "Outstanding Statistical Application."

David J. Spiegelhalter is Winton Professor of the Public Understanding of Risk at Cambridge University and Senior Scientist in the MRC Biostatistics Unit, Cambridge. He has published extensively on Bayesian methodology and applications, and holds the Royal Statistical Society Guy Medal in Bronze and in Silver.

Read More

Product Details

ISBN-13:
9780387987675
Publisher:
Springer New York
Publication date:
07/16/2007
Series:
Information Science and Statistics Series
Edition description:
1st ed. 1999. Corr. 2nd printing 2003
Pages:
324
Product dimensions:
6.14(w) x 9.21(h) x 0.88(d)

Table of Contents

Introduction.- Logic, Uncertainty, and Probability.- Building and Using Probabilistic Networks.- Graph Theory.- Markov Properties on Graphs.- Discrete Networks.- Gaussian and Mixed Discrete-Gaussian Networks.- Discrete Multistage Decision Networks.- Learning About Probabilities.- Checking Models Against Data.- Structural Learning.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >