Probability and Random Processes with Applications to Signal Processing / Edition 3

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $13.74
Usually ships in 1-2 business days
(Save 91%)
Other sellers (Hardcover)
  • All (13) from $13.74   
  • New (7) from $19.99   
  • Used (6) from $13.74   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$19.99
Seller since 2014

Feedback rating:

(76)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
0130200719 Brand New International Edition . Cover and ISBN of the books might be different in some cases . Fast Shipping, Super Quality & Awesome Customer Support is Guaranteed!

Ships from: Oakland, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$37.00
Seller since 2014

Feedback rating:

(3)

Condition: New
2001 Hard cover 3rd ed. New. No dust jacket. Sewn binding. Cloth over boards. 699 p. Audience: General/trade.

Ships from: St Louis, MO

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$119.95
Seller since 2010

Feedback rating:

(27)

Condition: New
Absolutely BRAND NEW US HARDCOVER STUDENT 3rd Edition / ISBN: 0130200719 / Mint condition / Never been read. Shipped out in one business day with free tracking

Ships from: Manvel, TX

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$125.00
Seller since 2014

Feedback rating:

(136)

Condition: New
Brand new.

Ships from: acton, MA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$125.00
Seller since 2014

Feedback rating:

(136)

Condition: New
Brand new.

Ships from: acton, MA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$137.95
Seller since 2013

Feedback rating:

(10)

Condition: New
100% BRAND NEW US HARDCOVER STUDENT 3rd Edition / ISBN: 0130200719 / Mint condition / Never been read. Shipped out in one business day with free tracking

Ships from: Manvel, TX

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$200.00
Seller since 2014

Feedback rating:

(76)

Condition: New
0130200719 Brand New International Edition . Cover and ISBN of the books might be different in some cases . Fast Shipping, Super Quality & Awesome Customer Support is Guaranteed!

Ships from: Oakland, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

Provides users with an accessible, yet mathematically solid, treatment of probability and random processes. Many computer examples integrated throughout, including random process examples in MATLAB. Includes expanded discussions of fundamental principles, especially basic probability. Includes new problems which deal with applications of basic theory—in such areas as medical imaging, percolation theory in fractals, and generation of random numbers. Several new topics include Failure rates, the Chernoff bound, interval estimation and the Student t-distribution, and power spectral density estimation. Functions of Random Variables is included as a separate chapter. Mean square convergence and introduction of Martingales is covered in the latter half of the book. Provides electrical and computer engineers with a solid treatment of probability and random processes.

Read More Show Less

Product Details

  • ISBN-13: 9780130200716
  • Publisher: Prentice Hall
  • Publication date: 7/6/2001
  • Edition description: 3RD
  • Edition number: 3
  • Pages: 699
  • Product dimensions: 7.23 (w) x 9.49 (h) x 1.13 (d)

Read an Excerpt

Preface

The first edition of this book (1986) grew out of a set of notes used by the authors to teach two one-semester courses on probability and random processes at Rensselaer Polytechnic Institute (RPI). At that time the probability course at RPI was required of all students in the Computer and Systems Engineering Program and was a highly recommended elective for students in closely related areas. While many undergraduate students took the course in the junior year, many seniors and first-year graduate students took the course for credit as well. Then, as now, most of the students were engineering students. To serve these students well, we felt that we should be rigorous in introducing fundamental principles while furnishing many opportunities for students to develop their skills at solving problems.

There are many books in this area and they range widely in their coverage and depth. At one extreme are the very rigorous and authoritative books that view probability from the point of view of measure theory and relate probability to rather exotic theorems such as the Radon-Nikodym theorem (see for example Probability and Measure by Patrick Billingsley, Wiley, 1978). At the other extreme are books that usually combine probability and statistics and largely omit underlying theory and the more advanced types of applications of probability. In the middle are the large number of books that combine probability and random processes, largely avoiding a measure theoretic approach, preferring to emphasize the axioms upon which the theory is based. It would be fair to say that our book falls into this latter category. Nevertheless this begs the question: why write or revise another book in this area if there are already several good texts out there that use the same approach and provide roughly the same coverage? Of course back in 1986 there were few books that emphasized the engineering applications of probability and random processes and that integrated the latter into one volume. Now there are several such books.

Both authors have been associated (both as students and faculty) with colleges and universities that have demanding programs in engineering and applied science. Thus their experience and exposure have been to superior students that would not be content with a text that furnished a shallow discussion of probability. At the same time, however, the authors wanted to write a book on probability and random processes for engineering and, applied science students. A measure-theoretic book, or one that avoided the engineering applications of probability and the processing of random signals, was regarded not suitable for such students. At the same time the authors felt that the book should have enough depth so that students taking 2nd year graduate courses in advanced topics such as estimation and detection, pattern recognition, voice and image processing, networking and queuing, and so forth would not be handicapped by insufficient knowledge of the fundamentals and applications of random phenomena. In a nutshell we tried to write a book that combined rigor with accessibility and had a strong self-teaching orientation. To that end we included a. large number of worked-out examples,

MATLAB codes, and special appendices that include a review of the kind of basic math needed for solving problems in probability as well as an introduction to measure theory and its relation to probability. The

MATLAB codes, as well as other useful material such as multiple choice exams that cover each of the book's sections, can be found at the book's web site http://www.prenhall.com/stark.

The normal use of this book would be as follows: for a first course in probability at, say the junior or senior year, a reasonable goal is to cover Chapters 1 through 4. Nevertheless we have found that this may be too much for students not well prepared in mathematics. In that case we suggest a load reduction in which combinatorics in Chapter 1 (parts of Section 1.8), failure rates in Chapter 2 (Section 2.7), more advanced density functions and the Poisson transform in Chapter 3 are lightly or not covered the first time around. The proof of the Central Limit Theorem, joint characteristic functions, and Section 4.8, which deals with statistics, all in Chapter 4, can, likewise, also be omitted on a first reading.

Chapters 5 to 9 provide the material for a first course in random processes. Normally such a course is taken in the first year of graduate studies and is required for all further study in signal processing, communications, computer and communication networking, controls, and estimation and detection theory. Here what to cover is given greater latitude. If pressed for time, we suggest that the pattern recognition applications and simultaneous diagonalization of two covariance matrices in Chapter 5 be given lower preference than the other material in that chapter. Chapters 6 and 7 are essential for any course in random processes and the coverage of the topics therein should be given high priority. Chapter 9 on signal processing should, likewise be given high priority, because it illustrates the applications of the theory to current state-of-art problems. However, within Chapter 9, the instructor can choose among a number of applications and need not cover them all if time pressure becomes an issue. Chapter 8 dealing with advanced topics is critically important to the more advanced students, especially those seeking further studies toward the Ph.D. Nevertheless it too can be lightly covered or omitted in a first course if time is the critical factor.

Readers familiar with the 2nd edition of this book will find significant changes in the 3rd edition. The changes were the result of numerous suggestions made by lecturers and students alike. To begin with, we modified the title to Probability and Random Processes with Applications to Signal Processing, to better reflect the contents. We removed the two chapters on estimation theory and moved some of this material to other chapters where it naturally fitted in with the material already there. Some of the material on parameter estimation e.g., the Gauss-Markov Theorem has been removed, owing to the need for finding space for new material. In terms of organization, the major changes have been in the random processes part of the book. Many readers preferred seeing discrete-time random phenomena in one chapter and continuous-time phenomena in another chapter. In the earlier editions of the book there was a division along these lines but also a secondary division along the lines of stationary versus non-stationary processes. For some this made the book awkward to teach from. Now all of the material on discrete-time phenomena appears in one chapter (Chapter 6); likewise for continuous-time phenomena (Chapter 7). Another major change is a new Chapter 9 that discusses applications to signal processing. Included are such topics as: the orthogonality principle, Wiener and Kalman filters, The Expectation-Maximization algorithm, Hidden Markov Models, and simulated annealing. Chapter 8 (Advanced Topics) covers much of the same ground as the old Chapter 9 e.g., stochastic continuity, meansquare convergence, Ergodicity etc. and material from the old Chapter 10 on representation of random processes.

There have been significant changes in the first half of the book also. For example, in Chapter 1 there is an added section on the misuses of probability in ordinary life. Here we were helped by the discussions in Steve Pinker's excellent book How the Mind Works (Norton Publishers, New York, 1997). Chapter 2 (Random Variables) now includes discussions 6n more advanced distributions such as the Gamma, Chi-square and the Student-t. All of the chapters have many more worked-out examples as well as more homework problems. Whenever convenient we tried to use MATLAB to obtain graphical results. Also, being a book primarily for engineers, many of the worked-out example and homework problems relate to real-life systems or situations.

We have added several new appendices to provide the necessary background mathematics for certain results in the text and to enrich the reader's understanding of probability. An appendix on Measure Theory falls in the latter category. Among the former are appendices on the delta and gamma functions, probability-related basic math, including the principle of proof-by-induction, Jacobians for n-dimensional transformations, and material on Fourier and Laplace inversion.

For this edition, the authors would like to thank Geoffrey Williamson and Yongyi Yang for numerous insightful discussions and help with some of the

MATLAB programs. Also we thank Nikos Galatsanos, Miles Wernick, Geoffrey Chan, Joseph LoCicero, and Don Ucci for helpful suggestions. We also would like to thank the administrations of Illinois Institute of Technology and Rensselaer Polytechnic Institute for their patience and support while this third edition was being prepared. Of course, in the end, it is the reaction of the students that is the strongest driving force for improvements. To all our students and readers we owe a large debt of gratitude.

Henry Stark John W. Woods

Read More Show Less

Table of Contents

Preface
1 Introduction to Probability 1
2 Random Variables 58
3 Functions of Random Variables 116
4 Expectation and Introduction to Estimation 169
5 Random Vectors and Parameter Estimation 244
6 Random Sequences 304
7 Random Processes 401
8 Advanced Topics in Random Processes 487
9 Applications to Statistical Signal Processing 552
App. A: Review of Relevant Mathematics 641
App. B Gamma and Delta Functions 658
App. C Functional Transformations and Jacobians 662
App. D: Measure and Probability 668
App. E Sampled Analog Waveforms and Discrete-time Signals 672
Index 674
Read More Show Less

Preface

Preface

The first edition of this book (1986) grew out of a set of notes used by the authors to teach two one-semester courses on probability and random processes at Rensselaer Polytechnic Institute (RPI). At that time the probability course at RPI was required of all students in the Computer and Systems Engineering Program and was a highly recommended elective for students in closely related areas. While many undergraduate students took the course in the junior year, many seniors and first-year graduate students took the course for credit as well. Then, as now, most of the students were engineering students. To serve these students well, we felt that we should be rigorous in introducing fundamental principles while furnishing many opportunities for students to develop their skills at solving problems.

There are many books in this area and they range widely in their coverage and depth. At one extreme are the very rigorous and authoritative books that view probability from the point of view of measure theory and relate probability to rather exotic theorems such as the Radon-Nikodym theorem (see for example Probability and Measure by Patrick Billingsley, Wiley, 1978). At the other extreme are books that usually combine probability and statistics and largely omit underlying theory and the more advanced types of applications of probability. In the middle are the large number of books that combine probability and random processes, largely avoiding a measure theoretic approach, preferring to emphasize the axioms upon which the theory is based. It would be fair to say that our book falls into this latter category. Nevertheless this begs the question: why write or revise another book in this area if there are already several good texts out there that use the same approach and provide roughly the same coverage? Of course back in 1986 there were few books that emphasized the engineering applications of probability and random processes and that integrated the latter into one volume. Now there are several such books.

Both authors have been associated (both as students and faculty) with colleges and universities that have demanding programs in engineering and applied science. Thus their experience and exposure have been to superior students that would not be content with a text that furnished a shallow discussion of probability. At the same time, however, the authors wanted to write a book on probability and random processes for engineering and, applied science students. A measure-theoretic book, or one that avoided the engineering applications of probability and the processing of random signals, was regarded not suitable for such students. At the same time the authors felt that the book should have enough depth so that students taking 2nd year graduate courses in advanced topics such as estimation and detection, pattern recognition, voice and image processing, networking and queuing, and so forth would not be handicapped by insufficient knowledge of the fundamentals and applications of random phenomena. In a nutshell we tried to write a book that combined rigor with accessibility and had a strong self-teaching orientation. To that end we included a. large number of worked-out examples, MATLAB codes, and special appendices that include a review of the kind of basic math needed for solving problems in probability as well as an introduction to measure theory and its relation to probability. The MATLAB codes, as well as other useful material such as multiple choice exams that cover each of the book's sections, can be found at the book's web site http://www.prenhall.com/stark.

The normal use of this book would be as follows: for a first course in probability at, say the junior or senior year, a reasonable goal is to cover Chapters 1 through 4. Nevertheless we have found that this may be too much for students not well prepared in mathematics. In that case we suggest a load reduction in which combinatorics in Chapter 1 (parts of Section 1.8), failure rates in Chapter 2 (Section 2.7), more advanced density functions and the Poisson transform in Chapter 3 are lightly or not covered the first time around. The proof of the Central Limit Theorem, joint characteristic functions, and Section 4.8, which deals with statistics, all in Chapter 4, can, likewise, also be omitted on a first reading.

Chapters 5 to 9 provide the material for a first course in random processes. Normally such a course is taken in the first year of graduate studies and is required for all further study in signal processing, communications, computer and communication networking, controls, and estimation and detection theory. Here what to cover is given greater latitude. If pressed for time, we suggest that the pattern recognition applications and simultaneous diagonalization of two covariance matrices in Chapter 5 be given lower preference than the other material in that chapter. Chapters 6 and 7 are essential for any course in random processes and the coverage of the topics therein should be given high priority. Chapter 9 on signal processing should, likewise be given high priority, because it illustrates the applications of the theory to current state-of-art problems. However, within Chapter 9, the instructor can choose among a number of applications and need not cover them all if time pressure becomes an issue. Chapter 8 dealing with advanced topics is critically important to the more advanced students, especially those seeking further studies toward the Ph.D. Nevertheless it too can be lightly covered or omitted in a first course if time is the critical factor.

Readers familiar with the 2nd edition of this book will find significant changes in the 3rd edition. The changes were the result of numerous suggestions made by lecturers and students alike. To begin with, we modified the title to Probability and Random Processes with Applications to Signal Processing, to better reflect the contents. We removed the two chapters on estimation theory and moved some of this material to other chapters where it naturally fitted in with the material already there. Some of the material on parameter estimation e.g., the Gauss-Markov Theorem has been removed, owing to the need for finding space for new material. In terms of organization, the major changes have been in the random processes part of the book. Many readers preferred seeing discrete-time random phenomena in one chapter and continuous-time phenomena in another chapter. In the earlier editions of the book there was a division along these lines but also a secondary division along the lines of stationary versus non-stationary processes. For some this made the book awkward to teach from. Now all of the material on discrete-time phenomena appears in one chapter (Chapter 6); likewise for continuous-time phenomena (Chapter 7). Another major change is a new Chapter 9 that discusses applications to signal processing. Included are such topics as: the orthogonality principle, Wiener and Kalman filters, The Expectation-Maximization algorithm, Hidden Markov Models, and simulated annealing. Chapter 8 (Advanced Topics) covers much of the same ground as the old Chapter 9 e.g., stochastic continuity, meansquare convergence, Ergodicity etc. and material from the old Chapter 10 on representation of random processes.

There have been significant changes in the first half of the book also. For example, in Chapter 1 there is an added section on the misuses of probability in ordinary life. Here we were helped by the discussions in Steve Pinker's excellent book How the Mind Works (Norton Publishers, New York, 1997). Chapter 2 (Random Variables) now includes discussions 6n more advanced distributions such as the Gamma, Chi-square and the Student-t. All of the chapters have many more worked-out examples as well as more homework problems. Whenever convenient we tried to use MATLAB to obtain graphical results. Also, being a book primarily for engineers, many of the worked-out example and homework problems relate to real-life systems or situations.

We have added several new appendices to provide the necessary background mathematics for certain results in the text and to enrich the reader's understanding of probability. An appendix on Measure Theory falls in the latter category. Among the former are appendices on the delta and gamma functions, probability-related basic math, including the principle of proof-by-induction, Jacobians for n-dimensional transformations, and material on Fourier and Laplace inversion.

For this edition, the authors would like to thank Geoffrey Williamson and Yongyi Yang for numerous insightful discussions and help with some of the MATLAB programs. Also we thank Nikos Galatsanos, Miles Wernick, Geoffrey Chan, Joseph LoCicero, and Don Ucci for helpful suggestions. We also would like to thank the administrations of Illinois Institute of Technology and Rensselaer Polytechnic Institute for their patience and support while this third edition was being prepared. Of course, in the end, it is the reaction of the students that is the strongest driving force for improvements. To all our students and readers we owe a large debt of gratitude.

Henry Stark John W. Woods

Read More Show Less

Introduction

Preface

The first edition of this book (1986) grew out of a set of notes used by the authors to teach two one-semester courses on probability and random processes at Rensselaer Polytechnic Institute (RPI). At that time the probability course at RPI was required of all students in the Computer and Systems Engineering Program and was a highly recommended elective for students in closely related areas. While many undergraduate students took the course in the junior year, many seniors and first-year graduate students took the course for credit as well. Then, as now, most of the students were engineering students. To serve these students well, we felt that we should be rigorous in introducing fundamental principles while furnishing many opportunities for students to develop their skills at solving problems.

There are many books in this area and they range widely in their coverage and depth. At one extreme are the very rigorous and authoritative books that view probability from the point of view of measure theory and relate probability to rather exotic theorems such as the Radon-Nikodym theorem (see for example Probability and Measure by Patrick Billingsley, Wiley, 1978). At the other extreme are books that usually combine probability and statistics and largely omit underlying theory and the more advanced types of applications of probability. In the middle are the large number of books that combine probability and random processes, largely avoiding a measure theoretic approach, preferring to emphasize the axioms upon which the theory is based. It would be fair to say that our book falls into this latter category. Nevertheless this begs the question:why write or revise another book in this area if there are already several good texts out there that use the same approach and provide roughly the same coverage? Of course back in 1986 there were few books that emphasized the engineering applications of probability and random processes and that integrated the latter into one volume. Now there are several such books.

Both authors have been associated (both as students and faculty) with colleges and universities that have demanding programs in engineering and applied science. Thus their experience and exposure have been to superior students that would not be content with a text that furnished a shallow discussion of probability. At the same time, however, the authors wanted to write a book on probability and random processes for engineering and, applied science students. A measure-theoretic book, or one that avoided the engineering applications of probability and the processing of random signals, was regarded not suitable for such students. At the same time the authors felt that the book should have enough depth so that students taking 2nd year graduate courses in advanced topics such as estimation and detection, pattern recognition, voice and image processing, networking and queuing, and so forth would not be handicapped by insufficient knowledge of the fundamentals and applications of random phenomena. In a nutshell we tried to write a book that combined rigor with accessibility and had a strong self-teaching orientation. To that end we included a. large number of worked-out examples, MATLAB codes, and special appendices that include a review of the kind of basic math needed for solving problems in probability as well as an introduction to measure theory and its relation to probability. The MATLAB codes, as well as other useful material such as multiple choice exams that cover each of the book's sections, can be found at the book's web site http://www.prenhall.com/stark.

The normal use of this book would be as follows: for a first course in probability at, say the junior or senior year, a reasonable goal is to cover Chapters 1 through 4. Nevertheless we have found that this may be too much for students not well prepared in mathematics. In that case we suggest a load reduction in which combinatorics in Chapter 1 (parts of Section 1.8), failure rates in Chapter 2 (Section 2.7), more advanced density functions and the Poisson transform in Chapter 3 are lightly or not covered the first time around. The proof of the Central Limit Theorem, joint characteristic functions, and Section 4.8, which deals with statistics, all in Chapter 4, can, likewise, also be omitted on a first reading.

Chapters 5 to 9 provide the material for a first course in random processes. Normally such a course is taken in the first year of graduate studies and is required for all further study in signal processing, communications, computer and communication networking, controls, and estimation and detection theory. Here what to cover is given greater latitude. If pressed for time, we suggest that the pattern recognition applications and simultaneous diagonalization of two covariance matrices in Chapter 5 be given lower preference than the other material in that chapter. Chapters 6 and 7 are essential for any course in random processes and the coverage of the topics therein should be given high priority. Chapter 9 on signal processing should, likewise be given high priority, because it illustrates the applications of the theory to current state-of-art problems. However, within Chapter 9, the instructor can choose among a number of applications and need not cover them all if time pressure becomes an issue. Chapter 8 dealing with advanced topics is critically important to the more advanced students, especially those seeking further studies toward the Ph.D. Nevertheless it too can be lightly covered or omitted in a first course if time is the critical factor.

Readers familiar with the 2nd edition of this book will find significant changes in the 3rd edition. The changes were the result of numerous suggestions made by lecturers and students alike. To begin with, we modified the title to Probability and Random Processes with Applications to Signal Processing, to better reflect the contents. We removed the two chapters on estimation theory and moved some of this material to other chapters where it naturally fitted in with the material already there. Some of the material on parameter estimation e.g., the Gauss-Markov Theorem has been removed, owing to the need for finding space for new material. In terms of organization, the major changes have been in the random processes part of the book. Many readers preferred seeing discrete-time random phenomena in one chapter and continuous-time phenomena in another chapter. In the earlier editions of the book there was a division along these lines but also a secondary division along the lines of stationary versus non-stationary processes. For some this made the book awkward to teach from. Now all of the material on discrete-time phenomena appears in one chapter (Chapter 6); likewise for continuous-time phenomena (Chapter 7). Another major change is a new Chapter 9 that discusses applications to signal processing. Included are such topics as: the orthogonality principle, Wiener and Kalman filters, The Expectation-Maximization algorithm, Hidden Markov Models, and simulated annealing. Chapter 8 (Advanced Topics) covers much of the same ground as the old Chapter 9 e.g., stochastic continuity, meansquare convergence, Ergodicity etc. and material from the old Chapter 10 on representation of random processes.

There have been significant changes in the first half of the book also. For example, in Chapter 1 there is an added section on the misuses of probability in ordinary life. Here we were helped by the discussions in Steve Pinker's excellent book How the Mind Works (Norton Publishers, New York, 1997). Chapter 2 (Random Variables) now includes discussions 6n more advanced distributions such as the Gamma, Chi-square and the Student-t. All of the chapters have many more worked-out examples as well as more homework problems. Whenever convenient we tried to use MATLAB to obtain graphical results. Also, being a book primarily for engineers, many of the worked-out example and homework problems relate to real-life systems or situations.

We have added several new appendices to provide the necessary background mathematics for certain results in the text and to enrich the reader's understanding of probability. An appendix on Measure Theory falls in the latter category. Among the former are appendices on the delta and gamma functions, probability-related basic math, including the principle of proof-by-induction, Jacobians for n-dimensional transformations, and material on Fourier and Laplace inversion.

For this edition, the authors would like to thank Geoffrey Williamson and Yongyi Yang for numerous insightful discussions and help with some of the MATLAB programs. Also we thank Nikos Galatsanos, Miles Wernick, Geoffrey Chan, Joseph LoCicero, and Don Ucci for helpful suggestions. We also would like to thank the administrations of Illinois Institute of Technology and Rensselaer Polytechnic Institute for their patience and support while this third edition was being prepared. Of course, in the end, it is the reaction of the students that is the strongest driving force for improvements. To all our students and readers we owe a large debt of gratitude.

Henry Stark
John W. Woods

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)