Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen
Dieses Lehrbuch präsentiert projektive Geometrie, ein wichtiges klassisches Gebiet der Mathematik, in neuem Gewand: Ein Akzent liegt auf überraschenden und wichtigen Anwendungen von Geometrie in Codierungstheorie und Kryptographie. Dazu werden alle benötigten Teile der klassischen projektiven Geometrie (synthetische und analytische Geometrie, Quadriken) bereitgestellt.
Die zweite Auflage beinhaltet folgende zusätzliche Themen: WOM-Codes (Wie kann man ein nur einmal beschreibbares Medium "mehrfach beschreiben"?), Perspektive (Ursprung der projektiven Geometrie), Bewegliche Fachwerke (Wann erlaubt ein fest aussehendes Fachwerk infinitesimale Bewegungen?) und Polarräume (moderne, sehr erfolgreiche Theorie, die auf den in Kapitel 4 behandelten "quadratischen Mengen" aufbaut). Der Text wurde für die 2.Auflage gründlich überarbeitet, die Argumentation wurde klarer gemacht, viele kleine zusätzliche Textbeiträge und Übungsaufgaben wurden ergänzt.
1114202352
Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen
Dieses Lehrbuch präsentiert projektive Geometrie, ein wichtiges klassisches Gebiet der Mathematik, in neuem Gewand: Ein Akzent liegt auf überraschenden und wichtigen Anwendungen von Geometrie in Codierungstheorie und Kryptographie. Dazu werden alle benötigten Teile der klassischen projektiven Geometrie (synthetische und analytische Geometrie, Quadriken) bereitgestellt.
Die zweite Auflage beinhaltet folgende zusätzliche Themen: WOM-Codes (Wie kann man ein nur einmal beschreibbares Medium "mehrfach beschreiben"?), Perspektive (Ursprung der projektiven Geometrie), Bewegliche Fachwerke (Wann erlaubt ein fest aussehendes Fachwerk infinitesimale Bewegungen?) und Polarräume (moderne, sehr erfolgreiche Theorie, die auf den in Kapitel 4 behandelten "quadratischen Mengen" aufbaut). Der Text wurde für die 2.Auflage gründlich überarbeitet, die Argumentation wurde klarer gemacht, viele kleine zusätzliche Textbeiträge und Übungsaufgaben wurden ergänzt.
37.99 In Stock
Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen

Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen

by Albrecht Beutelspacher, Ute Rosenbaum
Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen

Projektive Geometrie: Von den Grundlagen bis zu den Anwendungen

by Albrecht Beutelspacher, Ute Rosenbaum

Paperback(2., durchges. u. erw. Auflage 2004)

$37.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Dieses Lehrbuch präsentiert projektive Geometrie, ein wichtiges klassisches Gebiet der Mathematik, in neuem Gewand: Ein Akzent liegt auf überraschenden und wichtigen Anwendungen von Geometrie in Codierungstheorie und Kryptographie. Dazu werden alle benötigten Teile der klassischen projektiven Geometrie (synthetische und analytische Geometrie, Quadriken) bereitgestellt.
Die zweite Auflage beinhaltet folgende zusätzliche Themen: WOM-Codes (Wie kann man ein nur einmal beschreibbares Medium "mehrfach beschreiben"?), Perspektive (Ursprung der projektiven Geometrie), Bewegliche Fachwerke (Wann erlaubt ein fest aussehendes Fachwerk infinitesimale Bewegungen?) und Polarräume (moderne, sehr erfolgreiche Theorie, die auf den in Kapitel 4 behandelten "quadratischen Mengen" aufbaut). Der Text wurde für die 2.Auflage gründlich überarbeitet, die Argumentation wurde klarer gemacht, viele kleine zusätzliche Textbeiträge und Übungsaufgaben wurden ergänzt.

Product Details

ISBN-13: 9783528172411
Publisher: Vieweg+Teubner Verlag
Publication date: 02/24/2004
Series: vieweg studium; Aufbaukurs Mathematik , #41
Edition description: 2., durchges. u. erw. Auflage 2004
Pages: 265
Product dimensions: 6.69(w) x 9.45(h) x 0.02(d)
Language: German

About the Author

Prof. Dr. Albrecht Beutelspacher lehrt im Schwerpunkt Geometrie und Diskrete Mathematik des Fachbereichs Mathematik an der Justus-Liebig-Universität in Gießen. Von ihm liegen zahlreiche Bücher bei Vieweg vor.

Table of Contents

1 Synthetische Geometrie.- 1.1 Grundbegriffe.- 1.2 Die Axiome der projektiven Geometrie.- 1.3 Aufbau der projektiven Geometrie.- 1.4 Quotientengeometrien.- 1.5 Endliche projektive Räume.- 1.6 Affine Geometrie.- 1.7 Diagramme.- 1.8 Anwendung: Effiziente Kommunikation 39 Übungsaufgaben 41.- Richtig oder falsch? 48.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- 2 Analytische Geometrie.- 2.1 Der projektive Raum P(V).- 2.2 Der Satz von Desargues und der Satz von Pappos.- 2.3 Homogene und inhomogene Koordinaten.- 2.4 Das Hyperboloid.- 2.5 Rationale Normkurven.- 2.6 Die Moulton-Ebene.- 2.7 Räumliche Geometrien sind desarguessch.- 2.8 Anwendung: Ein Verkabelungsproblem.- Übungsaufgaben.- Richtig oder falsch?.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- 3 Die Struktursätze oder Wie lassen sich projektive und affine Räume gut beschreiben?.- 3.1 Zentralkollineationen.- 3.2 Die Gruppe der Translationen.- 3.3 Der Schiefkörper.- 3.4 Die ersten Struktursätze.- 3.5 Die zweiten Struktursätze.- 3.6 Projektive Kollineationen.- Übungsaufgaben.- Richtig oder falsch?.- Sie sollten mit folgenden Begriffen umgehen können:.- 4 Quadratische Mengen.- 4.1 Grundlegende Definitionen.- 4.2 Der Index einer quadratischen Menge.- 4.3 Quadratische Mengen in Räumen kleiner Dimension.- 4.4 Quadratische Mengen in endlichen projektiven Räumen.- 4.5 Elliptische, parabolische und hyperbolische quadratische Mengen.- 4.6 Die Kleinsche quadratische Menge.- 4.7 Quadriken.- 4.8 Plücker-Koordinaten.- 4.9 Fachwerke.- Übungsaufgaben.- Richtig oder falsch?.- Sie sollten mit folgenden Begriffen umgehen können:.- 5 Anwendungen von Geometrie in der Codierungstheorie.- 5.1 Grundlegende Begriffe der Codierungstheorie.- 5.2 Lineare Codes.- 5.3 Hamming-Codes.- 5.4MDS-Codes.- 5.5 Reed-Muller-Codes.- 5.6 WOM-Codes.- Übungsaufgaben.- Richtig oder falsch?.- Projekte.- Sie sollten mit folgenden Begriffen umgehen können:.- 6 Anwendungen von Geometrie in der Kryptographie.- 6.1 Grundlegende Begriffe der Kryptographie.- 6.2 Verschlüsselung.- 6.3 Authentifikation.- 6.4 Shared Secret Schemes.- 6.5 Speicherplatzreduktion für kryptographische Schlüssel.- Übungsaufgaben.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- Stichwortverzeichnis.- Symbolverzeichnis.
From the B&N Reads Blog

Customer Reviews