Table of Contents
Introduction. Qualitative Reasoning xvii 
Chapter 1. Allen’s Calculus 1
 1.1. Introduction 1
 1.2. Allen’s interval relations 6
 1.3. Constraint networks 8
 1.4. Constraint propagation 17
 1.5. Consistency tests 26
 Chapter 2. Polynomial Subclasses of Allen’s Algebra 29
 2.1. “Show me a tractable relation!” 29
 2.2. Subclasses of Allen’s algebra 30
 2.3. Maximal tractable subclasses of Allen’s algebra 52
 2.4. Using polynomial subclasses 57
 2.5. Models of Allen’s language 60
 2.6. Historical note 61
 Chapter 3. Generalized Intervals 63
 3.1. “When they built the bridge .  “ 63
 3.2. Entities and relations 65
 3.3. The lattice of basic (p, q)-relations 68
 3.4. Regions associated with basic (p, q)-relations 69
 3.5. Inversion and composition 73
 3.6. Subclasses of relations: convex and pre-convex relations 79
 3.7. Constraint networks 82
 3.8. Tractability of strongly pre-convex relations 83
 3.9. Conclusions 84
 3.10. Historical note 85
 Chapter 4. Binary Qualitative Formalisms 87
 4.1. “Night driving” 87
 4.2. Directed points in dimension 1 92
 4.3. Directed intervals 97
 4.4. The OPRA direction calculi 99
 4.5. Dipole calculi 100
 4.6. The Cardinal direction calculus 101
 4.7. The Rectangle calculus 104
 4.8. The n-point calculus 106
 4.9. The n-block calculus 108
 4.10. Cardinal directions between regions 109
 4.11. The INDU calculus 123
 4.12. The 2n-star calculi 126
 4.13. The Cyclic interval calculus 128
 4.14. The RCC–8 formalism 131
 4.15. A discrete RCC theory 137
 Chapter 5. Qualitative Formalisms of Arity Greater than 2 145
 5.1. “The sushi bar” 145
 5.2. Ternary spatial and temporal formalisms 146
 5.3. Alignment relations between regions 155
 5.4. Conclusions 158
 Chapter 6. Quantitative Formalisms, Hybrids, and Granularity 159
 6.1. “Did John meet Fred this morning?”159
 6.2. TCSP metric networks 160
 6.3. Hybrid networks 164
 6.4. Meiri’s formalism 168
 6.5. Disjunctive linear relations (DLR) 174
 6.6. Generalized temporal networks 175
 6.7. Networks with granularity 179
 Chapter 7. Fuzzy Reasoning 187
 7.1. “Picasso’s Blue period” 187
 7.2. Fuzzy relations between classical intervals 188
 7.3. Events and fuzzy intervals 195
 7.4. Fuzzy spatial reasoning: a fuzzy RCC 208
 7.5. Historical note 222
 Chapter 8. The Geometrical Approach and Conceptual Spaces 223
 8.1. “What color is the chameleon?” 223
 8.2. Qualitative semantics 224
 8.3. Why introduce topology and geometry? 225
 8.4. Conceptual spaces 226
 8.5. Polynomial relations of INDU 237
 8.6. Historical note 258
 Chapter 9. Weak Representations 259
 9.1. “Find the hidden similarity” 259
 9.2. Weak representations 261
 9.3. Classifying the weak representations of An 275
 9.4. Extension to the calculi based on linear orders 283
 9.5. Weak representations and configurations 290
 9.6. Historical note 304
 Chapter 10. Models of RCC−8 305
 10.1. “Disks in the plane” 305
 10.2. Models of a composition table 307
 10.3. The RCC theory and its models 312
 10.4. Extensional entries of the composition table 319
 10.5. The generalized RCC theory 329
 10.6. A countable connection algebra 337
 10.7. Conclusions 341
 Chapter 11. A Categorical Approach of Qualitative Reasoning 343
 11.1. “Waiting in line” 343
 11.2. A general construction of qualitative formalisms 346
 11.3. Examples of partition schemes 349
 11.4. Algebras associated with qualitative formalisms 350
 11.5. Partition schemes and weak representations 352
 11.6. A general definition of qualitative formalisms 353
 11.7. Interpretating consistency 355
 11.8. The category of weak representations 357
 11.9. Conclusions 360
 Chapter 12. Complexity of Constraint Languages 363
 12.1. “Sudoku puzzles” 363
 12.2. Structure of the chapter 365
 12.3. Constraint languages 366
 12.4. An algebraic approach of complexity 367
 12.5. CSPs and morphisms of relational structures 368
 12.6. Clones of operations 373
 12.7. From local consistency to global consistency 375
 12.8. The infinite case 376
 12.9. Disjunctive constraints and refinements 382
 12.10. Refinements and independence 389
 12.11. Historical note 390
 Chapter 13. Spatial Reasoning and Modal Logic 391
 13.1. “The blind men and the elephant” 391
 13.2. Space and modal logics 393
 13.3. The modal logic S4 393
 13.4. Topological models 396
 13.5. Translating the RCC−8 predicates 408
 13.6. An alternative modal translation of RCC−8 409
 13.7. Generalized frames 410
 13.8. Complexity 411
 13.9. Complements 412
 Chapter 14. Applications and Software Tools 413
 14.1. Applications 413
 14.2. Software tools 416
 Chapter 15. Conclusion and Prospects 423
 15.1. Introduction 423
 15.2. Combining qualitative formalisms 423
 15.3. Spatio-temporal reasoning 426
 15.4. Alternatives to qualitative reasoning 430
 15.5. To conclude — for good 434
 Appendix A. Elements of Topology 435
 A.1. Topological spaces 435
 A.2. Metric spaces 445
 A.3. Connectedness and convexity 447
 Appendix B. Elements of Universal Algebra 451
 B.1. Abstract algebras 451
 B.2. Boolean algebras 452
 B.3. Binary relations and relation algebras 454
 B.4. Basic elements of the language of categories 457
 Appendix C. Disjunctive Linear Relations 463
 C.1. DLRs: definitions and satisfiability 463
 C.2. Linear programming 464
 C.3. Complexity of the satisfiability problem 466
 Bibliography 471
 Index 501