×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Quantitative Social Science: An Introduction
     

Quantitative Social Science: An Introduction

by Kosuke Imai
 

See All Formats & Editions

Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written

Overview

Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science.

Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results—it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior.

Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors.

  • Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science
  • Provides hands-on instruction using R programming, not paper-and-pencil statistics
  • Includes more than forty data sets from actual research for students to test their skills on
  • Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools
  • Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises
  • Offers a solid foundation for further study
  • Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides

Product Details

ISBN-13:
9781400885251
Publisher:
Princeton University Press
Publication date:
02/27/2017
Sold by:
Barnes & Noble
Format:
NOOK Book
Pages:
432
File size:
80 MB
Note:
This product may take a few minutes to download.

Meet the Author

Kosuke Imai is professor of politics and founding director of the Program in Statistics and Machine Learning at Princeton University.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews