Quantum Circuit Simulation / Edition 1

Quantum Circuit Simulation / Edition 1

by George F. Viamontes, Igor L. Markov, John P. Hayes
     
 

ISBN-10: 9048130646

ISBN-13: 9789048130641

Pub. Date: 12/02/2009

Publisher: Springer Netherlands

Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far

…  See more details below

Overview

Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuIDDPro package, which is freely available and can be used by students of quantum information as a "quantum calculator."

Product Details

ISBN-13:
9789048130641
Publisher:
Springer Netherlands
Publication date:
12/02/2009
Edition description:
2009
Pages:
190
Product dimensions:
6.40(w) x 9.30(h) x 0.80(d)

Table of Contents

1 Introduction. 1.1 Quantum Circuits. 1.2 Quantum Simulation. 1.3 Book. 2 Gate Modeling and Circuit Simulation. 2.1 Classical Digital Circuits. 2.2 Simulation with Binary Decision Diagrams. 2.3 Sequential Circuits and Synchronization. 2.4 Summary. 3 Linear Algebra and Quantum Mechanics. 3.1 Linear Algebra. 3.2 Quantum Mechanics. 3.3 Summary. 4 Quantum Information Processing. 4.1 Quantum Gates. 4.2 Quantum Circuits. 4.3 Synchronization of Quantum Circuits. 4.4 Sample Algorithms. 4.5 Summary. 5 Special Case: Simulating Stabilizer Circuits. 5.1 Basics of a Quantum Circuit Simulator. 5.2 Stabilizer States, Gates and Circuits. 5.3 Data structures. 5.4 Algorithms. 5.5 Summary. 6 Generic Circuit Simulation Techniques. 6.1 Qubit-wise Multiplication. 6.2 P-blocked Simulation. 6.3 Tensor Networks. 6.4 Slightly-entangled Simulation. 6.5 Summary. 7 State-Vector Simulation with Decision Diagrams. 7.1 Quantum Information Decision Diagrams. 7.2 Scalability of QuIDD-based Simulation. 7.3 Empirical Validation. 7.4 Related Decision Diagrams. 7.5 Summary. 8 Density-Matrix Simulation with QuIDDs. 8.1 QuIDD Properties and Density Matrices. 8.2 QuIDD-based Outer Product. 8.3 QuIDD-based Partial Trace. 8.4 Empirical Validation. 8.5 Summary. 9 Checking Equivalence of States and Circuits. 9.1 Quantum Equivalence Checking. 9.2 Global-Phase Equivalence. 9.3 Relative-Phase Equivalence. 9.4 Empirical Validation. 9.5 Summary. 10 Improving QuIDD-based Simulation. 10.1 Gate Algorithms. 10.2 Dynamic Tensor Products and Partial Tracing. 10.3 Empirical Validation. 10.4 Summary. 11 Closing Remarks. A QuIDDPro Simulator. A.1 Running the Simulator. A.2 Functions and Code in Multiple Files. A.3 Language Reference. B QuIDDPro Examples. B.1 Well-known Quantum States. B.2 Grover’s Search Algorithm. B.3 Shor’s Integer Factoring Algorithm. References. Index.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >