Quantum Field Theory / Edition 2

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $37.00
Usually ships in 1-2 business days
(Save 35%)
Other sellers (Paperback)
  • All (14) from $37.00   
  • New (11) from $37.00   
  • Used (3) from $52.93   


Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics.

The three main objectives of the book are to:

Explain the basic physics and formalism of quantum field theory

To make the reader proficient in theory calculations using Feynman diagrams

To introduce the reader to gauge theories, which play a central role in elementary particle physics.

Thus, the first ten chapters deal with QED in the canonical formalism, and are little changed from the first edition. A brief introduction to gauge theories (Chapter 11) is then followed by two sections, which may be read independently of each other. They cover QCD and related topics (Chapters 12-15) and the unified electroweak theory (Chapters 16 – 19) respectively. Problems are provided at the end of each chapter.

New to this edition:

Five new chapters, giving an introduction to quantum chromodynamics and the methods used to understand it: in particular, path integrals and the renormalization group.

The treatment of electroweak interactions has been revised and updated to take account of more recent experiments.

Read More Show Less

Editorial Reviews

Revised and updated edition (1st ed., 1984) of an introduction to quantum field theory for students beginning research in theoretical and experimental physics. The main objectives are to explain the basic physics and formalism of quantum field theory, to bring about proficiency in theory calculations using Feynman diagrams, and to introduce gauge theories, which play a central role in elementary particle physics. Annotation c. Book News, Inc., Portland, OR (booknews.com)
From the Publisher
"...designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental analysis." (Zentralblatt MATH, Vol. 972, 2001/22)
Read More Show Less

Product Details

  • ISBN-13: 9780471496847
  • Publisher: Wiley
  • Publication date: 6/8/2010
  • Edition description: New Edition
  • Edition number: 2
  • Pages: 492
  • Product dimensions: 6.60 (w) x 9.50 (h) x 1.10 (d)

Table of Contents



1 Photons and the Electromagnetic Field.

1.1 Particles and Fields.

1.2 The Electromagnetic Field in the Absence of Charges.

1.3 The Electric Dipole Interaction.

1.4 The Electromagnetic Field in the Presence of Charges.

1.5 Appendix: The Schrödinger, Heisenberg and Interaction Pictures.


2 Lagrangian Field Theory.

2.1 Relativistic Notation.

2.2 Classical Lagrangian Field Theory.

2.3 Quantized Lagrangian Field Theory.

2.4 Symmetries and Conservation Laws.


3 The Klein–Gordon field.

3.1 The Real Klein–Gordon Field.

3.2 The Complex Klein–Gordon Field.

3.3 Covariant Commutation Relations.

3.4 The Meson Propagator.


4 The Dirac Field.

4.1 The Number Representation for Fermions.

4.2 The Dirac Equation.

4.3 Second Quantization.

4.4 The Fermion Propagator.

4.5 The Electromagnetic Interaction and Gauge Invariance.


5 Photons: Covariant Theory.

5.1 The Classical Fields.

5.2 Covariant Quantization.

5.3 The Photon Propagator.


6 The S-Matrix Expansion.

6.1 Natural Dimensions and Units.

6.2 The S-Matrix Expansion.

6.3 Wick’s Theorem.

7 Feynman Diagrams and Rules in QED.

7.1 Feynman Diagrams in Configuration Space.

7.2 Feynman Diagrams in Momentum Space.

7.3 Feynman Rules for QED.

7.4 Leptons.


8 QED Processes in Lowest Order.

8.1 The Cross-Section.

8.2 Spin Sums.

8.3 Photon Polarization Sums.

8.4 Lepton Pair Production in (e+e-) Collisions.

8.5 Bhabha Scattering.

8.6 Compton Scattering.

8.7 Scattering by an External Field.

8.8 Bremsstrahlung.

8.9 The Infra-Red Divergence.


9 Radiative Corrections.

9.1 The Second-Order Radiative Corrections of QED.

9.2 The Photon Self-Energy.

9.3 The Electron Self-Energy.

9.4 External Line Renormalization.

9.5 The Vertex Modification.

9.6 Applications.

9.7 The Infra-Red Divergence.

9.8 Higher-Order Radiative Corrections.

9.9 Renomalizability.


10 Regularization.

10.1 Mathematical Preliminaries.

10.2 Cut-Off Regularization: The Electron Mass Shift.

10.3 Dimensional Regularization.

10.4 Vacuum Polarization.

10.5 The Anomalous Magnetic Moment.


11 Gauge Theories.

11.1 The Simplest Gauge Theory: QED.

11.2 Quantum Chromodynamics.

11.3 Alternative Interactions?.

11.4 Appendix: Two Gauge Transformation Results.


12 Field Theory Methods.

12.1 Green Functions.

12.2 Feynman Diagrams and Feynman Rules.

12.3 Relation to S-Matrix Elements.

12.4 Functionals and Grassmann Fields.

12.5 The Generating Functional.


13 Path Integrals.

13.1 Functional Integration.

13.2 Path Integrals.

13.3 Perturbation Theory.

13.4 Gauge Independent Quantization?.


14 Quantum Chromodynamics.

14.1 Gluon Fields.

14.2 Including Quarks.

14.3 Perturbation Theory.

14.4 Feynman Rules for QCD.

14.5 Renormalizability of QCD.


15 Asymptotic Freedom.

15.1 Electron-Positron Annihilation.

15.2 The Renormalization Scheme.

15.3 The Renormalization Group.

15.4 The Strong Coupling Constant.

15.5 Applications.

15.6 Appendix: Some Loop Diagrams in QCD.


16 Weak Interactions.

16.1 Introduction.

16.2 Leptonic Weak Interactions.

16.3 The Free Vector Boson Field.

16.4 The Feynman Rules for the IVB Theory.

16.5 Decay Rates.

16.6 Applications of the IVB Theory.

16.7 Neutrino Masses.

16.8 Difficulties with the IVB Theory.


17 A Gauge Theory of Weak Interactions.

17.1 QED Revisited.

17.2 Global Phase Transformations and Conserved Weak Currents.

17.3 The Gauge-Invariant Electro-Weak Interaction.

17.4 Properties of the Gauge Bosons.

17.5 Lepton and Gauge Boson Masses.

18 Spontaneous Symmetry Breaking.

18.1 The Goldstone Model.

18.2 The Higgs Model.

18.3 The Standard Electro-Weak Theory.

19 The Standard Electroweak Theory.

19.1 The Lagrangian Density in the Unitary Gauge.

19.2 Feynman Rules.

19.3 Elastic Neutrino–Electron Scattering.

19.4 Electron–Positron Annihilation.

19.5 The Higgs Boson.


Appendix A The Dirac Equation. 

Appendix B Feynman Rules and Formulae for Pertubation Therory.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)