Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures [NOOK Book]


This book is aimed at providing all of the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. However, perhaps more importantly, starting from this low common denominator, this text is designed to lead the reader through a series of simple example theoretical and computational implementations, and slowly build from solid ...
See more details below
Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
BN.com price
(Save 42%)$69.95 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.


This book is aimed at providing all of the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. However, perhaps more importantly, starting from this low common denominator, this text is designed to lead the reader through a series of simple example theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their own.

The author believes that there are two aspects to theoretical work, with the first being to analyse and interpret experimental data, while the second is to advance new ideas. His hope is that this book will certainly facilitate the former and will at least provide the knowledge and skills base from which quantified predictions can be developed from the beginnings of an idea. Written in the style of a mathematics course text, it is hoped that this book will appeal to readers from within as well as outside the low dimensional semiconductor community. Some of the examples developed are relevant to the semiconductor community at large, while the microscopic calculations presented could be of interest to other areas of condensed matter, such as carbon nanostructures, high-temperature superconductors, etc.

New material in this second edition includes:

  • sections on effects of magnetic fields on quantum wells
  • excited impurity levels
  • screening of the optical phonon interaction
  • acoustic and optical deformation potential scattering
  • spin-orbit coupling in the pseudopotential calculation and
  • New chapters on strained quantum wells and k.p theory.

Aimed at postgraduate students of semiconductor and condensed matter physics, the book will be invaluable to all those researching in academic and industrial laboratories worldwide.

Read More Show Less

Product Details

  • ISBN-13: 9781119964759
  • Publisher: Wiley
  • Publication date: 9/26/2011
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 3
  • Pages: 564
  • File size: 14 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Paul Harrison is currently working in the Institute of Microwaves an photonics (IMP), which is a research institute within the School of Electronic and Electrical Engineering at the University of Leeds in the United Kingdom. he can always be fond on the web, at the time of writing at:


and always answers email. Currently he can be reached at:

p.harrison@leeds.ac.uk or p.harrison@physics.org

Paul is working on a wide variety of projects, most of which centre around exploiting quantum mechanics for the creation of novel opto-electronic devices, largely, but not exclusively, in semiconductor Quantum Wells, Wires and Dots. Up-to-date information can be found on his web page. He is always looking for exceptionally well-qualified and motivated students to study for a PhD degree with him-if interested, please don't hesitate to contact him.

Zoran Ikonic was Professor at the University of Belgrade and is now also a researcher in the IMP. His research interests and experience include the full width of semiconductor physics and optoelectronic devices, in particular, band structure calculations, strainlayered systems, carrier scattering theory, non-linear optics, as well as conventional and quantum mechanical methods for device optimization.

Vladimir Jovanovic completed his PhD at the IMP on physical models of quantum well infrared photodetectors and quantum cascade lasers in GaN- and GaAs-based materials for near-, mid- and far-infrared (terahertz) applications.

Marco Califano is a Royal Society University Research Fellow bas3ed in the IMP at Leeds whose main interests focus on atomistic Pseudopotential modelling of the electronic and optical properties of semiconductor nanostructures of different materials for applications in photovoltaics.

Craig A. Evans completed his PhD on the optical and thermal properties of quantum cascade lasers in the School of Electronic and Electrical Engineering, University of Leeds in 2008. He then worked as a Postdoctoral Research Assistant in the IMP working in the field of rare-earth doped fibre lasers and integrated photonic device modelling and has now joined the staff of the school.

Dragan Indjin is an Academic Research Fellow in the IMP and has research interests in semiconductor nanostructures, non-linear optics. quantum computing and spintronics.

Read More Show Less

Table of Contents



About the author(s)

About the book


1 Semiconductors and heterostructures

1.1 The mechanics of waves

1.2 Crystal structure

1.3 The effective mass approximation

1.4 Band theory

1.5 Heterojunctions

1.6 Heterostructures

1.7 The envelope function approximation

1.8 The reciprocal lattice

2 Solutions to Schrödinger’s equation

2.1 The infinite well

2.2 In-plane dispersion

2.3 Density of states

2.4 Subband populations

2.5 Finite well with constant mass

2.6 Effective mass mismatch at heterojunctions

2.7 The infinite barrier height and mass limits

2.8 Hermiticity and the kinetic energy operator

2.9 Alternative kinetic energy operators

2.10 Extension to multiple-well systems

2.11 The asymmetric single quantum well

2.12 Addition of an electric field

2.13 The infinite superlattice

2.14 The single barrier

2.15 The double barrier

2.16 Extension to include electric field

2.17 Magnetic fields and Landau quantisation

2.18 In summary

3 Numerical solutions

3.1 Shooting method

3.2 Generalised initial conditions

3.3 Practical implementation of the shooting method

3.4 Heterojunction boundary conditions

3.5 The parabolic potential well

3.6 The Pöschl–Teller potential hole

3.7 Convergence tests

3.8 Extension to variable effective mass

3.9 The double quantum well

3.10 Multiple quantum wells and finite superlattices

3.11 Addition of electric field

3.12 Quantum confined Stark effect

3.13 Field–induced anti-crossings

3.14 Symmetry and selection rules

3.15 The Heisenberg uncertainty principle

3.16 Extension to include band non-parabolicity

3.17 Poisson’s equation

3.18 Self-consistent Schrödinger–Poisson solution

3.19 Computational implementation

3.20 Modulation doping

3.21 The high-electron-mobility transistor

3.22 Band filling

4 Diffusion

4.1 Introduction

4.2 Theory

4.3 Boundary conditions

4.4 Convergence tests

4.5 Constant diffusion coefficients

4.6 Concentration dependent diffusion coefficient

4.7 Depth dependent diffusion coefficient

4.8 Time dependent diffusion coefficient

4.9 !-doped quantum wells

4.10 Extension to higher dimensions

5 Impurities

5.1 Donors and acceptors in bulk material

5.2 Binding energy in a heterostructure

5.3 Two-dimensional trial wave function

5.4 Three-dimensional trial wave function

5.5 Variable-symmetry trial wave function

5.6 Inclusion of a central cell correction

5.7 Special considerations for acceptors

5.8 Effective mass and dielectric mismatch

5.9 Band non-parabolicity

5.10 Excited states

5.11 Application to spin-flip Raman spectroscopy

5.12 Alternative approach to excited impurity states

5.13 The ground state

5.14 Position dependence

5.15 Excited States

5.16 Impurity occupancy statistics

6 Excitons

6.1 Excitons in bulk

6.2 Excitons in heterostructures

6.3 Exciton binding energies

6.4 1s exciton

6.5 The two-dimensional and three-dimensional limits

6.6 Excitons in single quantum wells

6.7 Excitons in multiple quantum wells

6.8 Stark Ladders

6.9 Self-consistent effects

6.10 Spontaneous symmetry breaking

6.11 2s exciton

7 Strained quantum wells, V. D. Jovanovíc

7.1 Stress and strain in bulk crystals

7.2 Strain in quantum wells

7.3 Strain balancing

7.4 Effect on the band profile of quantum wells

7.5 The piezoelectric effect

7.6 Induced piezoelectric fields in quantum wells

7.7 Effect of piezoelectric fields on quantum wells

8 Simple models of quantum wires and dots

8.1 Further confinement

8.2 Schrödinger’s equation in quantum wires

8.3 Infinitely deep rectangular wires

8.4 Simple approximation to a finite rectangular wire

8.5 Circular cross-section wire

8.6 Quantum boxes

8.7 Spherical quantum dots

8.8 Non-zero angular momentum states

8.9 Approaches to pyramidal dots

8.10 Matrix approaches

8.11 Finite difference expansions

8.12 Density of states

9 Quantum dots, M. Califano

9.1 0-dimensional systems and their experimental realisation

9.2 Cuboidal dots

9.3 Dots of arbitrary shape

9.4 Application to real problems

9.5 A more complex model is not always a better model

10 Carrier scattering

10.1 Fermi’s Golden Rule

10.2 Phonons

10.3 Longitudinal optic phonon scattering of bulk carriers

10.4 LO phonon scattering of two-dimensional carriers

10.5 Application to conduction subbands

10.6 Averaging over carrier distributions

10.7 Ratio of emission to absorption

10.8 Screening of the LO phonon interaction

10.9 Acoustic deformation potential scattering

10.10 Application to conduction subbands

10.11 Optical deformation potential scattering

10.12 Confined and interface phonon modes

10.13 Carrier–carrier scattering

10.14 Addition of screening

10.15 Averaging over an initial state population

10.16 Intrasubband versus intersubband

10.17 Thermalised distributions

10.18 Auger-type intersubband processes

10.19 Asymmetric intrasubband processes

10.20 Empirical relationships

10.21 Carrier–photon scattering

10.22 Carrier scattering in quantum wires and dots

11 Electron transport

11.1 Introduction

11.2 Mid-infrared quantum cascade lasers

11.3 Realistic quantum cascade laser

11.4 Rate equations

11.5 Self-consistent solution of the rate equations

11.6 Calculation of the current density

11.7 Phonon and carrier-carrier scattering transport

11.8 Electron temperature

11.9 Calculation of the gain

11.10 QCLs, QWIPs, QDIPs and other methods

12 Optical properties of quantum wells, D. Indjin

12.1 Intersubband absorption in quantum wells

12.2 Bound-bound transitions

12.3 Bound-free transitions

12.4 Fermi level

12.5 Rectangular quantum well

12.6 Intersubband optical non-linearities

12.7 Electric polarisation

12.8 Intersubband second harmonic generation

12.9 Maximization of resonant susceptibility

13 Optical waveguides, C. A. Evans

13.1 Introduction to optical waveguides

13.2 Optical waveguide analysis

13.3 Optical properties of materials

13.4 Application to waveguides of laser devices

14 Multiband envelope function (k.p) method, Z. Ikoníc

14.1 Symmetry, basis states and band structure

14.2 Valence band structure and the 6 × 6 Hamiltonian

14.3 4 × 4 valence band Hamiltonian

14.4 Complex band structure

14.5 Block-diagonalisation of the Hamiltonian

14.6 The valence band in strained cubic semiconductors

14.7 Hole subbands in heterostructures

14.8 Valence band offset

14.9 The layer (transfer matrix) method

14.10 Quantum well subbands

14.11 The influence of strain

14.12 Strained quantum well subbands

14.13 Direct numerical methods

15 Empirical pseudopotential theory

15.1 Principles and Approximations

15.2 Elemental Band Structure Calculation

15.3 Spin–orbit coupling

15.4 Compound Semiconductors

15.5 Charge densities

15.6 Calculating the effective mass

15.7 Alloys

15.8 Atomic form factors

15.9 Generalisation to a large basis

15.10 Spin–orbit coupling within the large basis approach

15.11 Computational implementation

15.12 Deducing the parameters and application

15.13 Isoelectronic impurities in bulk

15.14 The electronic structure around point defects

16 Microscopic electronic properties of heterostructures

16.1 The superlattice unit cell

16.2 Application of large basis method to superlattices

16.3 Comparison with envelope–function approximation

16.4 In-plane dispersion

16.5 Interface coordination

16.6 Strain-layered superlattices

16.7 The superlattice as a perturbation

16.8 Application to GaAs/AlAs superlattices

16.9 Inclusion of remote bands

16.10 The valence band

16.11 Computational effort

16.12 Superlattice dispersion and the interminiband laser

16.13 Addition of electric field

17 Application to quantum wires and dots

17.1 Recent progress

17.2 The quantum-wire unit cell

17.3 Confined states

17.4 V-grooved quantum wires

17.5 Along-axis dispersion

17.6 Tiny quantum dots

17.7 Pyramidal quantum dots

17.8 Transport through dot arrays

17.9 Anti-wires and anti-dots

Concluding Remarks

Appendix A: Materials parameters


Topic Index

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)