Radiative Processes in Astrophysics / Edition 1

Paperback (Print)
Rent
Rent from BN.com
$57.06
(Save 66%)
Est. Return Date: 11/15/2014
Buy Used
Buy Used from BN.com
$100.00
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $124.76
Usually ships in 1-2 business days
(Save 26%)
Other sellers (Paperback)
  • All (9) from $124.76   
  • New (6) from $129.22   
  • Used (3) from $124.76   

Overview

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.

Read More Show Less

Product Details

  • ISBN-13: 9780471827597
  • Publisher: Wiley
  • Publication date: 1/28/1991
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 400
  • Product dimensions: 6.77 (w) x 9.57 (h) x 0.82 (d)

Meet the Author

George B. Rybicki received his B.S. degree in physics from Carnegie-Mellon University and his Ph.D. in physics from Harvard University. He is a physicist at the Harvard-Smithsonian Center for Astrophysics and lecturer in the Astronomy Department at Harvard. His research interests include stellar atmospheres, stellar dynamics and radiative transfer. Alan P. Lightman received his A.B. degree in physics from Princeton University and his Ph.D. in theoretical physics from the California Institute of Technology. He was a research fellow at Cornell and then an Assistant Professor of Astronomy at Harvard University from 1976-1979. He is presently at the Harvard-Smithsonian Center for Astrophysics. His research includes work in general relativity, the astrophysics of black holes, radiation mechanisms, and stellar dynamics. He is also a coauthor of Problem Book in Relativity and Gravitation (1975).

Read More Show Less

Table of Contents

Chapter 1

Fundamentals of Radiative Transfer

1.1 The Electromagnetic Spectrum;
Elementary Properties of Radiation

1.2 Radiative Flux

1.3 The Specific Intensity and Its Moments

1.4 Radiative Transfer

1.5 Thermal Radiation

1.6 The Einstein Coefficients

1.7 Scattering Effects;
Random Walks

1.8 Radiative Diffusion

Chapter 2

Basic Theory of Radiation Fields

2.1 Review of Maxwell's Equations

2.2 Plane Electromagnetic Waves

2.3 The Radiation Spectrum

2.4 Polarization and Stokes Parameters 62

2.5 Electromagnetic Potentials

2.6 Applicability of Transfer Theory and the Geometrical Optics Limit

Chapter 3

Radiation from Moving Charges

3.1 Retarded Potentials of Single Moving Charges: The Liénard-Wiechart Potentials

3.2 The Velocity and Radiation Fields

3.3 Radiation from Nonrelativistic Systems of Particles

3.4 Thomson Scattering (Electron Scattering)

3.5 Radiation Reaction

3.6 Radiation from Harmonically Bound Particles

Chapter 4

Relativistic Covariance and Kinematics

4.1 Review of Lorentz Transformations

4.2 Four-Vectors

4.3 Tensor Analysis

4.4 Covariance of Electromagnetic Phenomena

4.5 A Physical Understanding of Field Transformations 129

4.6 Fields of a Uniformly Moving Charge

4.7 Relativistic Mechanics and the Lorentz Four-Force

4.8 Emission from Relativistic Particles

4.9 Invariant Phase Volumes and Specific Intensity

Chapter 5

Bremsstrahlung

5.1 Emission from Single-Speed Electrons

5.2 Thermal Bremsstrahlung Emission

5.3 Thermal Bremsstrahlung (Free-Free) Absorption

5.4 Relativistic Bremsstrahlung

Chapter 6

Synchrotron Radiation

6.1 Total Emitted Power

6.2 Spectrum of Synchrotron Radiation: A Qualitative Discussion

6.3 Spectral Index for Power-Law Electron Distribution

6.4 Spectrum and Polarization of Synchrotron Radiation: A Detailed Discussion

6.5 Polarization of Synchrotron Radiation

6.6 Transition from Cyclotron to Synchrotron Emission

6.7 Distinction between Received and Emitted Power

6.8 Synchrotron Self-Absorption

6.9 The Impossibility of a Synchrotron Maser in Vacuum

Chapter 7

Compton Scattering

7.1 Cross Section and Energy Transfer for the Fundamental Process

7.2 Inverse Compton Power for Single Scattering

7.3 Inverse Compton Spectra for Single Scattering

7.4 Energy Transfer for Repeated Scatterings in a Finite, Thermal Medium: The Compton Y Parameter

7.5 Inverse Compton Spectra and Power for Repeated Scatterings by Relativistic Electrons of Small Optical Depth

7.6 Repeated Scatterings by Nonrelativistic Electrons: The Kompaneets Equation

7.7 Spectral Regimes for Repeated Scattering by Nonrelativistic Electrons

Chapter 8

Plasma Effects

8.1 Dispersion in Cold, Isotropic Plasma

8.2 Propagation Along a Magnetic Field;
Faraday Rotation

8.3 Plasma Effects in High-Energy Emission Processes

Chapter 9

Atomic Structure

9.1 A Review of the Schrödinger Equation

9.2 One Electron in a Central Field

9.3 Many-Electron Systems

9.4 Perturbations, Level Splittings, and Term Diagrams

9.5 Thermal Distribution of Energy Levels and Ionization

Chapter 10

Radiative Transitions

10.1 Semi-Classical Theory of Radiative Transitions

10.2 The Dipole Approximation

10.3 Einstein Coefficients and Oscillator Strengths

10.4 Selection Rules

10.5 Transition Rates

10.6 Line Broadening Mechanisms

Chapter 11

Molecular Structure

11.1 The Born-Oppenheimer Approximation: An Order of Magnitude Estimate of Energy Levels

11.2 Electronic Binding of Nuclei

11.3 Pure Rotation Spectra

11.4 Rotation-Vibration Spectra

11.5 Electronic-Rotational-Vibrational Spectra

Solutions

Index

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)