Radio Frequency Circuit Design [NOOK Book]

Overview

This book focuses on components such as filters, transformers, amplifiers, mixers, and oscillators. Even the phase lock loop chapter (the last in the book) is oriented toward practical circuit design, in contrast to the more systems orientation of most communication texts.
Read More Show Less
... See more details below
Radio Frequency Circuit Design

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$71.49
BN.com price
(Save 42%)$125.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

This book focuses on components such as filters, transformers, amplifiers, mixers, and oscillators. Even the phase lock loop chapter (the last in the book) is oriented toward practical circuit design, in contrast to the more systems orientation of most communication texts.
Read More Show Less

Editorial Reviews

From the Publisher
"This book focuses on components such as filters, transformers, amplifiers, mixers and oscillators. Even the phase lock loop chapter (the last in the book) is oriented toward practical circuit design, in contrast to the more systems orientation of most communication texts. " (Forums Digital Media Net, 15 March 2011)
Read More Show Less

Product Details

  • ISBN-13: 9781118099476
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 3/16/2011
  • Series: Wiley Series in Microwave and Optical Engineering , #238
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 2
  • Pages: 401
  • File size: 12 MB
  • Note: This product may take a few minutes to download.

Meet the Author

W. ALAN DAVIS is a professor in the department of electrical engineering at the University of Texas at Arlington. He was previously employed at Raytheon, where he worked on IMPATT diode power combiners, thermal response of IMPATT diodes, broadband directional couplers, Schiffman phase shifters, and filter design. He was also involved in computer optimization techniques and in software design for automated test stations. More recently, Davis has worked on nonlinear parametric effects and self-heating effects of silicon on insulator transistors.
Read More Show Less

Table of Contents

Preface to the Second Edition.

Preface to the First Edition.

1 Information Transfer Technology.

1.1 Introduction.

1.2 Information and Capacity.

1.3 Dependent States.

1.4 Basic Transmitter?Receiver Confi guration.

1.5 Active Device Technology.

Problems.

Reference.

2 Resistors, Capacitors, and Inductors.

2.1 Introduction.

2.2 Resistors.

2.3 Capacitors.

2.4 Inductors.

2.5 Conclusions.

Problems.

References.

3 Impedance Matching.

3.1 Introduction.

3.2 The Q Factor.

3.3 Resonance and Bandwidth.

3.4 Unloaded Q.

3.5 L Circuit Impedance Matching.

3.6 π Transformation Circuit.

3.7 T Transformation Circuit.

3.8 Tapped Capacitor Transformer.

3.9 Parallel Double-Tuned Transformer.

3.10 Conclusions.

Problems.

References.

4 Multiport Circuit Parameters and Transmission Lines.

4.1 Voltage?Current Two-Port Parameters.

4.2 ABCD Parameters.

4.3 Image Impedance.

4.4 Telegrapher's Equations.

4.5 Transmission Line Equation.

4.6 Smith Chart.

4.7 Transmission Line Stub Transformer.

4.8 Commonly Used Transmission Lines.

4.9 Scattering Parameters.

4.10 Indefinite Admittance Matrix.

4.11 Indefinite Scattering Matrix.

4.12 Conclusions.

Problems.

References.

5 Filter Design and Approximation.

5.1 Introduction.

5.2 Ideal and Approximate Filter Types.

5.3 Transfer Function and Basic Filter Concepts.

5.4 Ladder Network Filters.

5.5 Elliptic Filter.

5.6 Matching Between Unequal Resistance Levels.

5.7 Conclusions.

Problems.

References.

6 Transmission Line Transformers.

6.1 Introduction.

6.2 Ideal Transmission Line Transformers.

6.3 Transmission Line Transformer Synthesis.

6.4 Electrically Long Transmission Line Transformers.

6.5 Baluns.

6.6 Dividers and Combiners.

6.7 The 90? Coupler.

Problems.

References.

7 Noise in RF Amplifiers.

7.1 Sources of Noise.

7.2 Thermal Noise.

7.3 Shot Noise.

7.4 Noise Circuit Analysis.

7.5 Amplifier Noise Characterization.

7.6 Noise Measurement.

7.7 Noisy Two-Port Circuits.

7.8 Two-Port Noise Factor Derivation.

7.9 Fukui Noise Model for Transistors.

Problems.

References.

8 Class A Amplifiers.

8.1 Introduction.

8.2 Defi nitions of Gain.

8.3 Transducer Power Gain of a Two-Port Network.

8.4 Power Gain Using S Parameters.

8.5 Simultaneous Match for Maximum Power Gain.

8.6 Stability.

8.7 Class A Power Amplifiers.

8.8 Power Combining of Power Amplifiers.

8.9 Properties of Cascaded Amplifiers.

8.10 Amplifier Design for Optimum Gain and Noise.

8.11 Conclusions.

Problems.

References.

9 RF Power Amplifiers.

9.1 Transistor Configurations.

9.2 Class B Amplifier.

9.3 Class C Amplifier.

9.4 Class C Input Bias Voltage.

9.5 Class D Power Amplifier.

9.6 Class E Power Amplifier.

9.7 Class F Power Amplifier.

9.8 Feed-Forward Amplifiers.

9.9 Conclusions.

Problems.

References.

10 Oscillators and Harmonic Generators.

10.1 Oscillator Fundamentals.

10.2 Feedback Theory.

10.3 Two-Port Oscillators with External Feedback.

10.4 Practical Oscillator Example.

10.5 Minimum Requirements of the Reflection Coefficient.

10.6 Common Gate (Base) Oscillators.

10.7 Stability of an Oscillator.

10.8 Injection-Locked Oscillator.

10.9 Oscillator Phase Noise.

10.10 Harmonic Generators.

Problems.

References.

11 RF Mixers.

11.1 Nonlinear Device Characteristics.

11.2 Figures of Merit for Mixers.

11.3 Single-Ended Mixers.

11.4 Single-Balanced Mixers.

11.5 Double-Balanced Mixers.

11.6 Double-Balanced Transistor Mixers.

11.7 Spurious Response.

11.8 Single-Sideband Noise Factor and Noise Temperature.

11.9 Special Mixer Applications.

11.10 Conclusions.

Problems.

References.

12 Phase-Lock Loops.

12.1 Introduction.

12.2 PLL Design Background.

12.3 PLL Applications.

12.4 PLL Basics.

12.5 Loop Design Principles.

12.6 Linear Analysis of the PLL.

12.7 Locking a Phase-Lock Loop.

12.8 Loop Types.

12.9 Negative Feedback in a PLL.

12.10 PLL Design Equations.

12.11 Phase Detector Types.

12.12 Design Examples.

12.13 Conclusions.

Problems.

References.

Appendix A Example of a Solenoid Design.

Appendix B Analytical Spiral Inductor Model.

Appendix C Double-Tuned Matching Circuit Example.

Appendix D Two-Port Parameter Conversion.

Appendix E Termination of a Transistor Port with a Load.

Appendix F Transistor and Amplifier Formulas.

Appendix G Transformed Frequency-Domain Measurements Using SPICE.

Appendix H Single-Tone Intermodulation Distortion Suppression for Double-Balanced Mixers.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)