×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Random Fields and Geometry / Edition 1
     

Random Fields and Geometry / Edition 1

by R. J. Adler, Jonathan E. Taylor
 

ISBN-10: 0387481125

ISBN-13: 9780387481128

Pub. Date: 06/28/2007

Publisher: Springer New York

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully

Overview

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined.

The three parts to the monograph are quite distinct. Part I presents a user-friendly yet comprehensive background to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness, entropy and majorizing measures, Borell and Slepian inequalities. Part II gives a quick review of geometry, both integral and Riemannian, to provide the reader with the material needed for Part III, and to give some new results and new proofs of known results along the way. Topics such as Crofton formulae, curvature measures for stratified manifolds, critical point theory, and tube formulae are covered. In fact, this is the only concise, self-contained treatment of all of the above topics, which are necessary for the study of random fields. The new approach in Part III is devoted to the geometry of excursion sets of random fields and the related Euler characteristic approach to extremal probabilities.

"Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory. These applications, to appear in a forthcoming volume, will cover areas as widespread as brain imaging, physical oceanography, and astrophysics.

Product Details

ISBN-13:
9780387481128
Publisher:
Springer New York
Publication date:
06/28/2007
Series:
Springer Monographs in Mathematics Series
Edition description:
2007
Pages:
454
Product dimensions:
6.10(w) x 9.30(h) x 1.00(d)

Table of Contents

Gaussian Processes.- Gaussian Fields.- Gaussian Inequalities.- Orthogonal Expansions.- Excursion Probabilities.- Stationary Fields.- Geometry.- Integral Geometry.- Differential Geometry.- Piecewise Smooth Manifolds.- Critical Point Theory.- Volume of Tubes.- The Geometry of Random Fields.- Random Fields on Euclidean Spaces.- Random Fields on Manifolds.- Mean Intrinsic Volumes.- Excursion Probabilities for Smooth Fields.- Non-Gaussian Geometry.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews