Random Matrix Models and their Applications

Random Matrix Models and their Applications

by Pavel Bleher
     
 

View All Available Formats & Editions

ISBN-10: 0521802091

ISBN-13: 9780521802093

Pub. Date: 06/01/2001

Publisher: Cambridge University Press

Random matrices arise from, and have important applications to, number theory, probability, combinatorics, representation theory, quantum mechanics, solid state physics, quantum field theory, quantum gravity, and many other areas of physics and mathematics. This volume of surveys and research results, based largely on lectures given at the Spring 1999 MSRI program

Overview

Random matrices arise from, and have important applications to, number theory, probability, combinatorics, representation theory, quantum mechanics, solid state physics, quantum field theory, quantum gravity, and many other areas of physics and mathematics. This volume of surveys and research results, based largely on lectures given at the Spring 1999 MSRI program of the same name, covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its focus on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Product Details

ISBN-13:
9780521802093
Publisher:
Cambridge University Press
Publication date:
06/01/2001
Series:
Mathematical Sciences Research Institute Publications Series, #40
Pages:
450
Product dimensions:
6.14(w) x 9.21(h) x 0.98(d)

Related Subjects

Table of Contents

1. Symmetrized random permutations Jinho Baik and Eric M. Rains; 2. Hankel determinants as Fredholm determinants Estelle L. Basor, Yang Chen and Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on partitions, Robinson-Schensted-Knuth correspondence, and random matrix ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics: applications to folding and coloring Philippe Di Francesco; 7. Inter-relationships between orthogonal, unitary and symplectic matrix ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random matrices John Harnad; 9. Orthogonal polynomials and random matrix theory Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K. Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin; 14. Integration over angular variables for two coupled matrices G. Mahoux, M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16. Integrable lattices: random matrices and random permutations Pierre Van Moerbeke; 17. Some matrix integrals related to knots and links Paul Zinn-Justin.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >