Real Analysis / Edition 3

Paperback (Print)
Rent
Rent from BN.com
$36.67
(Save 61%)
Est. Return Date: 12/23/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $41.01
Usually ships in 1-2 business days
(Save 56%)
Other sellers (Paperback)
  • All (5) from $41.01   
  • New (1) from $149.60   
  • Used (4) from $41.01   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$149.60
Seller since 2014

Feedback rating:

(58)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
0024041513 Brand New! Fast Shipping! Free USPS Tracking Number. Excellent Customer Service!

Ships from: Lexington, KY

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

This is the classic introductory graduate text. Heart of the book is measure theory and Lebesque integration.
Read More Show Less

Product Details

  • ISBN-13: 9780024041517
  • Publisher: Pearson
  • Publication date: 2/2/1988
  • Edition description: REV
  • Edition number: 3
  • Pages: 444
  • Product dimensions: 5.90 (w) x 9.20 (h) x 1.10 (d)

Table of Contents

PART I: LEBESGUE INTEGRATION FOR FUNCTIONS OF A SINGLE REAL VARIABLE

1. The Real Numbers: Sets, Sequences and Functions

1.1 The Field, Positivity and Completeness Axioms

1.2 The Natural and Rational Numbers

1.3 Countable and Uncountable Sets

1.4 Open Sets, Closed Sets and Borel Sets of Real Numbers

1.5 Sequences of Real Numbers

1.6 Continuous Real-Valued Functions of a Real Variable

2. Lebesgue Measure

2.1 Introduction

2.2 Lebesgue Outer Measure

2.3 The σ-algebra of Lebesgue Measurable Sets

2.4 Outer and Inner Approximation of Lebesgue Measurable Sets

2.5 Countable Additivity and Continuity of Lebesgue Measure

2.6 Nonmeasurable Sets

2.7 The Cantor Set and the Cantor-Lebesgue Function

3. Lebesgue Measurable Functions

3.1 Sums, Products and Compositions

3.2 Sequential Pointwise Limits and Simple Approximation

3.3 Littlewood's Three Principles, Egoroff's Theorem and Lusin's Theorem

4. Lebesgue Integration

4.1 The Riemann Integral

4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure

4.3 The Lebesgue Integral of a Measurable Nonnegative Function

4.4 The General Lebesgue Integral

4.5 Countable Additivity and Continuity of Integraion

4.6 Uniform Integrability: The Vitali Convergence Theorem

5. Lebesgue Integration: Further Topics

5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem

5.2 Convergence in measure

5.3 Characterizations of Riemann and Lebesgue Integrability

6. Differentiation and Integration

6.1 Continuity of Monotone Functions

6.2 Differentiability of Monotone Functions: Lebesgue's Theorem

6.3 Functions of Bounded Variation: Jordan's Theorem

6.4 Absolutely Continuous Functions

6.5 Integrating Derivatives: Differentiating Indefinite Integrals

6.6 Convex Functions

7. The LΡ Spaces: Completeness and Approximation

7.1 Normed Linear Spaces

7.2 The Inequalities of Young, Hölder and Minkowski

7.3 LΡ is Complete: The Riesz-Fischer Theorem

7.4 Approximation and Separability

8. The LΡ Spaces: Duality and Weak Convergence

8.1 The Dual Space of LΡ

8.2 Weak Sequential Convergence in LΡ

8.3 Weak Sequential Compactness

8.4 The Minimization of Convex Functionals

PART II: ABSTRACT SPACES: METRIC, TOPOLOGICAL, AND HILBERT

9. Metric Spaces: General Properties

9.1 Examples of Metric Spaces

9.2 Open Sets, Closed Sets and Convergent Sequences

9.3 Continuous Mappings Between Metric Spaces

9.4 Complete Metric Spaces

9.5 Compact Metric Spaces

9.6 Separable Metric Spaces

10. Metric Spaces: Three Fundamental Theorems

10.1 The Arzelà-Ascoli Theorem

10.2 The Baire Category Theorem

10.3 The Banach Contraction Principle

11. Topological Spaces: General Properties

11.1 Open Sets, Closed Sets, Bases and Subbases

11.2 The Separation Properties

11.3 Countability and Separability

11.4 Continuous Mappings Between Topological Spaces

11.5 Compact Topological Spaces

11.6 Connected Topological Spaces

12. Topological Spaces: Three Fundamental Theorems

12.1 Urysohn's Lemma and the Tietze Extension Theorem

12.2 The Tychonoff Product Theorem

12.3 The Stone-Weierstrass Theorem

13. Continuous Linear Operators Between Banach Spaces

13.1 Normed Linear Spaces

13.2 Linear Operators

13.3 Compactness Lost: Infinite Dimensional Normed Linear Spaces

13.4 The Open Mapping and Closed Graph Theorems

13.5 The Uniform Boundedness Principle

14. Duality for Normed Linear Spaces

14.1 Linear Functionals, Bounded Linear Functionals and Weak Topologies

14.2 The Hahn-Banach Theorem

14.3 Reflexive Banach Spaces and Weak Sequential Convergence

14.4 Locally Convex Topological Vector Spaces

14.5 The Separation of Convex Sets and Mazur's Theorem

14.6 The Krein-Milman Theorem

15. Compactness Regained: The Weak Topology

15.1 Alaoglu's Extension of Helley's Theorem

15.2 Reflexivity and Weak Compactness: Kakutani's Theorem

15.3 Compactness and Weak Sequential Compactness: The Eberlein-Šmulian Theorem

15.4 Metrizability of Weak Topologies

16. Continuous Linear Operators on Hilbert Spaces

16.1 The Inner Product and Orthogonality

16.2 The Dual Space and Weak Sequential Convergence

16.3 Bessel's Inequality and Orthonormal Bases

16.4 Adjoints and Symmetry for Linear Operators

16.5 Compact Operators

16.6 The Hilbert Schmidt Theorem

16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators

PART III: MEASURE AND INTEGRATION: GENERAL THEORY

17. General Measure Spaces: Their Properties and Construction

17.1 Measures and Measurable Sets

17.2 Signed Measures: The Hahn and Jordan Decompositions

17.3 The Carathéodory Measure Induced by an Outer Measure

17.4 The Construction of Outer Measures

17.5 The Carathéodory-Hahn Theorem: The Extension of a Premeasure to a Measure

18. Integration Over General Measure Spaces

18.1 Measurable Functions

18.2 Integration of Nonnegative Measurable Functions

18.3 Integration of General Measurable Functions

18.4 The Radon-Nikodym Theorem

18.5 The Saks Metric Space: The Vitali-Hahn-Saks Theorem

19. General LΡ Spaces: Completeness, Duality and Weak Convergence

19.1 The Completeness of LΡ ( Χ, μ), 1 ≤ Ρ ≤ ∞

19.2 The Riesz Representation theorem for the Dual of LΡ ( Χ, μ), 1 ≤ Ρ ≤ ∞

19.3 The Kantorovitch Representation Theorem for the Dual of L (Χ, μ)

19.4 Weak Sequential Convergence in LΡ (X, μ), 1 < Ρ < 1

19.5 Weak Sequential Compactness in L1 (X, μ): The Dunford-Pettis Theorem

20. The Construction of Particular Measures

20.1 Product Measures: The Theorems of Fubini and Tonelli

20.2 Lebesgue Measure on Euclidean Space Rn

20.3 Cumulative Distribution Functions and Borel Measures on R

20.4 Carathéodory Outer Measures and hausdorff Measures on a Metric Space

21. Measure and Topology

21.1 Locally Compact Topological Spaces

21.2 Separating Sets and Extending Functions

21.3 The Construction of Radon Measures

21.4 The Representation of Positive Linear Functionals on Cc (X): The Riesz-Markov Theorem

21.5 The Riesz Representation Theorem for the Dual of C(X)

21.6 Regularity Properties of Baire Measures

22. Invariant Measures

22.1 Topological Groups: The General Linear Group

22.2 Fixed Points of Representations: Kakutani's Theorem

22.3 Invariant Borel Measures on Compact Groups: von Neumann's Theorem

22.4 Measure Preserving Transformations and Ergodicity: the Bogoliubov-Krilov Theorem

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 3 Customer Reviews
  • Anonymous

    Posted September 2, 2005

    Don't make me laugh!

    I have been a student of Analysis for several years and have done research in PDE's and mathematical physics as well as TA'd PDE's and analysis courses and let me tell you...This book is an aweful treatment of this beautiful subject. I admit that some students respond well to the concise (but boring) exposition but this subject is really capable of coming to life. Royden convinces the first time reader otherwise. Professors who choose this book to teach from are most likely as insipid as it. Not recommended.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 7, 2001

    A great textbook

    This is a wonderful book from which to learn real analysis. It is one of the few texts that first treats Lebesgue measure on R before presenting general measure theory. That makes it much easier to learn. The exercises are also pretty hard, and that is a good thing.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 16, 1999

    What a waste of paper

    It is indeed very unfortunate that this book is still in print, while so many other excellent books are not. The first edition of this book was published many years ago, but this new edition is not an improvement. The book is easy to read, but dull and boring. Also, many important results are not included or are placed in the exercises. Some proofs are very weak. The second part of the book is even worse. This is a very lousy reference book, and an awful book to study from. Definitely not recommended to anyone.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing all of 3 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)