Real Numbers, Generalizations of the Reals, and Theories of Continua / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$217.75
Used and New from Other Sellers
Used and New from Other Sellers
from $222.38
Usually ships in 1-2 business days
(Save 20%)
Other sellers (Hardcover)
  • All (3) from $222.38   
  • New (2) from $222.38   
  • Used (1) from $325.90   

Overview

Since their appearance in the late 19th century, the Cantor—Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another.
With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
Read More Show Less

Product Details

  • ISBN-13: 9780792326892
  • Publisher: Springer Netherlands
  • Publication date: 9/30/1994
  • Series: Synthese Library Series , #242
  • Edition description: 1994
  • Edition number: 1
  • Pages: 288
  • Product dimensions: 0.81 (w) x 9.21 (h) x 6.14 (d)

Table of Contents

Part 0: General Introduction; P. Ehrlich. Part I: The Cantor—Dedekind Philosophy and its Early Reception. On the Infinite and Infinitesimal in Mathematical Analysis, Presidential Address to the London Mathematical Society, November 13, 1902, E.W. Hobson. Part II: Alternative Theories of Real Numbers. A Constructive Look at the Real Number Line; D.S. Bridges. The Surreals and Reals; J.H. Conway. Part III: Extensions and Generalizations of the Ordered Field of Reals: the Late 19th-Century Geometrical Motivation. Veronese's Non-Archimedean Linear Continuum; G. Fisher. Review of Hilbert's Foundations of Geometry; Henri Poincaré (1902); Translated for the American Mathematical Society by E.V. Huntington (1903). On Non-Archimedean Geometry, Invited Address to the 4th International Congress of Mathematicians, Rome, April 1908, Giuseppe Veronese; Translated by Mathieu Marion (with editorial notes by Philip Ehrlich). Part IV: Extensions and Generalizations of the Reals: Some 20th-Century Developments. Calculation, Order, and Continuity; H. Sinaceur. The Hyperreal Line; H.J. Keisler. All Numbers Great and Small; P. Ehrlich. Rational and Real Ordinal Numbers; D. Klaua.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)