While traditional databases excel at complex queries over historical data, they are inherently pull-based and therefore ill-equipped to push new information to clients. Systems for data stream management and processing, on the other hand, are natively pushoriented and thus facilitate reactive behavior. However, they do not retain data indefinitely and are therefore not able to answer historical queries. The book provides an overview over the different (push-based) mechanisms for data retrieval in each system class and the semantic differences between them. It also provides a comprehensive overview over the current state of the art in real-time databases.
It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.
1133115565
It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.
Real-Time & Stream Data Management: Push-Based Data in Research & Practice
While traditional databases excel at complex queries over historical data, they are inherently pull-based and therefore ill-equipped to push new information to clients. Systems for data stream management and processing, on the other hand, are natively pushoriented and thus facilitate reactive behavior. However, they do not retain data indefinitely and are therefore not able to answer historical queries. The book provides an overview over the different (push-based) mechanisms for data retrieval in each system class and the semantic differences between them. It also provides a comprehensive overview over the current state of the art in real-time databases.
It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.
It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.
59.99
In Stock
5
1

Real-Time & Stream Data Management: Push-Based Data in Research & Practice

Real-Time & Stream Data Management: Push-Based Data in Research & Practice
eBook(1st ed. 2019)
$59.99
Related collections and offers
59.99
In Stock
Product Details
ISBN-13: | 9783030105556 |
---|---|
Publisher: | Springer-Verlag New York, LLC |
Publication date: | 01/02/2019 |
Series: | SpringerBriefs in Computer Science |
Sold by: | Barnes & Noble |
Format: | eBook |
File size: | 3 MB |
From the B&N Reads Blog