Real-Time Systems / Edition 1

Hardcover (Print)
Buy Used
Buy Used from BN.com
$108.30
(Save 25%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $108.30
Usually ships in 1-2 business days
(Save 25%)
Other sellers (Hardcover)
  • All (4) from $108.30   
  • Used (4) from $108.30   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$108.30
Seller since 2005

Feedback rating:

(49090)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Very Good
Ships same day or next business day via UPS (Priority Mail for AK/HI/APO/PO Boxes)! Used sticker and some writing and/or highlighting. Used books may not include working access ... code or dust jacket. Read more Show Less

Ships from: Columbia, MO

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$110.95
Seller since 2011

Feedback rating:

(34)

Condition: Good
0130996513 COLLEGE TEXTBOOK - WE DO NOT SHIP TO AK OR HI - New items are sent as they were shipped to us. Used Items may or may not include access codes, cds, or supplemental ... materials. Item may have varying amounts of stickers, highlighting or tape. We ship all orders within 1 business day. Read more Show Less

Ships from: Richardson, TX

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$134.48
Seller since 2006

Feedback rating:

(58593)

Condition: Very Good
Former Library book. Great condition for a used book! Minimal wear. 100% Money Back Guarantee. Shipped to over one million happy customers. Your purchase benefits world literacy!

Ships from: Mishawaka, IN

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$182.99
Seller since 2014

Feedback rating:

(27)

Condition: Good
Buy with Confidence. Excellent Customer Support. We ship from multiple US locations. No CD, DVD or Access Code Included.

Ships from: Fort Mill, SC

Usually ships in 1-2 business days

  • Standard, 48 States
Page 1 of 1
Showing All
Close
Sort by

Overview

Written by a renowned expert, Real-Time Systems provides professionals and students with a comprehensive treatment of real-time computing and communication systems. The book covers the most recent advances in real-time operating systems and communications networks. Thus, this book serves as a vehicle for technology transition within the real-time systems community of systems architects, designers, chief scientists and technologists, and systems analysts. Jane Liu's subject matter and adept treatment provide an engaging learning environment for students as well. With real-time systems, the technologies at play include telecommunication, signal processing, command and control, and digital control. Their applications have particular relevance to day-to-day operations, such as engine and break mechanisms in cars, traffic light operations, flight control and air-traffic control, and heart beat and blood pressure monitoring.

Real-Time Systems is both a valuable reference for professionals and an advanced text for Computer Science and Computer Engineering students.

  • Real world real-time applications based on research and practice
  • State-of-the-art algorithms and methods for validation
  • Methods for end-to-end scheduling and resource management
  • More than 100 illustrations to enhance understanding
  • Comprehensive treatment of the technology known as RMA (rate-monotonic analysis) methods
Read More Show Less

Editorial Reviews

Booknews
A textbook written for a technical elective for seniors and graduate students in computer science or computer engineering. Liu (electrical engineering, Massachusetts Institute of Technology) builds on other operating systems knowledge and covers techniques for scheduling, resource access control, and validation that are used in real-time computer or communication systems. Algorithms, protocols, and mechanisms are defined by pseudocode or simple rules that can serve as a starting point for implementation. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780130996510
  • Publisher: Prentice Hall
  • Publication date: 4/13/2000
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 592
  • Product dimensions: 7.24 (w) x 9.32 (h) x 1.49 (d)

Meet the Author

JANE W. S. LIU received her M.S. and Sc.D. in Electrical Engineering from Massachusetts Institute of Technology. Before joining the University of Illinois, where she currently teaches, Jane worked with industry. She serves on numerous program committees and on symposia and workshops on real-time systems. She is currently a member of ACM and a Fellow of IEEE. Dr. Liu's current research is concerned with the means to provide an open environment to real-time applications.

Read More Show Less

Read an Excerpt

Preface

This text grew from my lecture notes of a course on real-time systems, which I have been teaching regularly for the past six years. The course is a technical elective for seniors and graduate students in Computer Science and Computer Engineering. It requires as a prerequisite an undergraduate course on operating systems.

Like the course, the book builds on the student's background in operating systems. It covers techniques for scheduling, resource access control, and validation that are, or are likely to be, widely used in real-time computing and communication systems. Each algorithm, protocol, or mechanism is defined by pseudocode or simple rules that can serve as a starting point of implementation. With few exceptions, each scheduling algorithm is accompanied by one or more validation techniques. You can use the techniques to ascertain that your application will meet its real-time requirements when scheduled according to the algorithm.

In addition to information on existing techniques, the book emphasizes basic principles of realtime systems. The foundations of these techniques are presented as theorems and corollaries. (I would like to have avoided this style, but feared that they might be buried in the narratives and details if not thus highlighted. I tried to keep them and their proofs informal.) I cover many of the theorems and proofs in my course in order to give students insight into why and how well the techniques work, and teach them the skills they will need to extend the existing techniques and develop new ones.

While this coverage may make the book a good reference for practitioners, a developer who wants to get information quickly may find its presentation verbose. The summary section at the end of each chapter should help. It gives you either the information you are looking for, or a pointer to the section where you can find the information.

Comments on Contents. The focus of the book is real-time operating systems and networks. It starts with a small part (Chapters 1, 2 and 3) on real-time applications and systems in general. It ends with a part (Chapters 11 and 12) on specific attributes and implementations of network protocols and operating systems. The large part (Chapters 4-10) in the middle covers uniprocessor scheduling, resource access control, and multiprocessor and distributed scheduling. Sections and subsections marked by
• are included for the sake of completeness. You can skip over them without loss of continuity.

Chapters 1 and 2. Chapter 1 gives an overview of several sample real-time applica dons for which the techniques described in the book were developed. I find most computer science and engineering students in my classes are unfamiliar with these applications. The chapter tries to explain for them the characteristics of workloads generated by the applications and the reasons for their timing requirements. Chapter 2 follows by giving the definitions of hard and soft real-time systems and the rationales for this classification.

Chapter 3. Chapter 3 describes a reference model of real-time systems. Subsequent chapters (e.g., 4-10) characterize the systems we study according to special variants of the model. The reference model has a rich set of features. We can describe a wide spectrum of real-time applications and underlying platforms in a sufficiently faithful manner in terms of the model so that we can analyze, simulate, and even emulate the system based on the description; indeed, some scheduling and validation tools use this kind of description as input. However, many features of the model are not used in later chapters. Sections describing them are marked by *.

Chapters 4-9. These six chapters describe algorithms and protocols for scheduling and validating real-time systems. In particular, they cover the time-driven approach, the RMA technology, and the dynamic-priority approach.

Chapter 4 gives a brief overview of the three approaches to scheduling: clock-driven, weighted round-robin, and priority-driven, which are treated in depth in later chapters. It also highlights some important facts about priority-driven scheduling. I discuss these facts in the beginning of my course as a way to motivate the techniques to be discussed in the weeks to come. Even if a student drops the course early in the semester, he/she will walk away knowing these facts.

Chapter 5 describes the clock-driven approach in general and cyclic executives in specific. This is the traditional way to schedule more or less deterministic workloads and is still the way used to schedule safety-critical applications.

Chapters 6, 7, and 8 are devoted to algorithms for scheduling and resource access control on one processor (i.e., a CPU, or a network link, I/O bus, a disk, and so on). Most of these algorithms are priority-driven; all of them can be implement easily on modern real-time operating systems and communication networks. The chapters adopt increasingly more complex variants of the periodic-task model: Chapter 6 starts from workloads consisting solely of independent periodic tasks that do not require any resource other than a processor. Chapter 7 adds aperiodic and sporadic tasks, and Chapter 8 adds resource contentions.

Chapter 9 is on multiprocessor and distributed systems. It introduces control and data dependencies among tasks and the end-to-end nature of their timing requirements. It then describes methods for partitioning an application into modules and assigning the modules to processors, controlling their access to resources on multiple processors, and synchronizing the execution of tasks on different processors.

Together, Chapters 6-9 give a comprehensive treatment of the RMA approach, which in essence is synonymous to fixed-priority scheduling. Most algorithms based on this approach allow application components to be added and deleted at run-time and can handle nondeterministic resource demands. The timing behavior of applications scheduled according to the algorithms are nondeterministic. However, the adverse effects of scheduling anomalies are bounded when fluctuations in resource demands are bounded. For most real-time applications, such as those described in Chapter 1, the accompanied validation techniques make it possible for us to predict fairly accurately the worstcase real-time performance of applications thus scheduled. The chapters also describe ways to schedule applications with widely varying resource demands within the deadline-driven framework. As examples, rate-based algorithms can provide timing isolation to sporadic tasks and enables us to predict the real-time performance of a distributed sporadic task independent of other tasks in the system.

Chapter 10. Chapter 10 introduces the concept of flexible applications. A flexible application contains tasks that can trade off the qualities of their results for their time and resource demands. The flexible computation approach is a means for handling overload and increasing availability. This chapter describes workload models that capture the characteristics and requirements of flexible applications and algorithms that have been developed to schedule them. Another subject of discussion is the temporal distance model. The timing requirements of some real-time tasks can be more conveniently defined in the terms of the maximum length of time between completions of consecutive task instances. The temporal distance model captures this kind of requirement.

Chapter 11. Chapter 11 focuses on real-time issues in communication networks, specifically, features and capabilities needed to support real-time applications. It starts by describing low-level, realtime flow control, and scheduling schemes for packet switched networks and medium access protocols for broadcast networks. It then describes resource reservation, internet and transport protocols designed for real-time applications.

Chapter 12. The last chapter examines in depth implementation details that were ignored in earlier chapters. It consists of two parts. The first part discusses how operating systems services and mechanisms should be implemented to enhance the predictability of applications using them. Some services and mechanisms are easy to implement, have low overhead, and can make the implementation of many algorithms described in previous chapters significantly simpler, but are not provided by most commercial operating systems. This part describes examples of them.

The second part gives an overview of several commercial real-time and general purpose operating systems. It highlights good features of real-time operating systems. It explains why Windows NT and Linux, two popular general purpose operating systems, do not work well for real-time applications and how to get better predictability out of them.

Read More Show Less

Table of Contents

1. Typical Real-Time Applications.

2. Hard Versus Soft Real-Time Systems.

3. A Reference Model of Real-Time Systems.

4. Commonly Used Approaches to Hard Real-Time Scheduling.

5. Clock-Driven Scheduling.

6. Priority-Driven Scheduling of Periodic Tasks.

7. Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems.

8. Resources and Resource Access Control.

9. Multiprocessor Scheduling and Resource Access Control.

10. Scheduling Flexible Computations and Tasks with Temporal Distance Constraints.

11. Real-Time Communications.

12. Operating Systems.

Bibliography.

Figure and Table Captions.

Figures and Tables.

Read More Show Less

Preface

Preface

This text grew from my lecture notes of a course on real-time systems, which I have been teaching regularly for the past six years. The course is a technical elective for seniors and graduate students in Computer Science and Computer Engineering. It requires as a prerequisite an undergraduate course on operating systems.

Like the course, the book builds on the student's background in operating systems. It covers techniques for scheduling, resource access control, and validation that are, or are likely to be, widely used in real-time computing and communication systems. Each algorithm, protocol, or mechanism is defined by pseudocode or simple rules that can serve as a starting point of implementation. With few exceptions, each scheduling algorithm is accompanied by one or more validation techniques. You can use the techniques to ascertain that your application will meet its real-time requirements when scheduled according to the algorithm.

In addition to information on existing techniques, the book emphasizes basic principles of realtime systems. The foundations of these techniques are presented as theorems and corollaries. (I would like to have avoided this style, but feared that they might be buried in the narratives and details if not thus highlighted. I tried to keep them and their proofs informal.) I cover many of the theorems and proofs in my course in order to give students insight into why and how well the techniques work, and teach them the skills they will need to extend the existing techniques and develop new ones.

While this coverage may make the book a good reference for practitioners, a developer who wants to get information quickly may find its presentation verbose. The summary section at the end of each chapter should help. It gives you either the information you are looking for, or a pointer to the section where you can find the information.

Comments on Contents. The focus of the book is real-time operating systems and networks. It starts with a small part (Chapters 1, 2 and 3) on real-time applications and systems in general. It ends with a part (Chapters 11 and 12) on specific attributes and implementations of network protocols and operating systems. The large part (Chapters 4-10) in the middle covers uniprocessor scheduling, resource access control, and multiprocessor and distributed scheduling. Sections and subsections marked by
• are included for the sake of completeness. You can skip over them without loss of continuity.

Chapters 1 and 2 . Chapter 1 gives an overview of several sample real-time applica dons for which the techniques described in the book were developed. I find most computer science and engineering students in my classes are unfamiliar with these applications. The chapter tries to explain for them the characteristics of workloads generated by the applications and the reasons for their timing requirements. Chapter 2 follows by giving the definitions of hard and soft real-time systems and the rationales for this classification.

Chapter 3 . Chapter 3 describes a reference model of real-time systems. Subsequent chapters (e.g., 4-10) characterize the systems we study according to special variants of the model. The reference model has a rich set of features. We can describe a wide spectrum of real-time applications and underlying platforms in a sufficiently faithful manner in terms of the model so that we can analyze, simulate, and even emulate the system based on the description; indeed, some scheduling and validation tools use this kind of description as input. However, many features of the model are not used in later chapters. Sections describing them are marked by *.

Chapters 4-9 . These six chapters describe algorithms and protocols for scheduling and validating real-time systems. In particular, they cover the time-driven approach, the RMA technology, and the dynamic-priority approach.

Chapter 4 gives a brief overview of the three approaches to scheduling: clock-driven, weighted round-robin, and priority-driven, which are treated in depth in later chapters. It also highlights some important facts about priority-driven scheduling. I discuss these facts in the beginning of my course as a way to motivate the techniques to be discussed in the weeks to come. Even if a student drops the course early in the semester, he/she will walk away knowing these facts.

Chapter 5 describes the clock-driven approach in general and cyclic executives in specific. This is the traditional way to schedule more or less deterministic workloads and is still the way used to schedule safety-critical applications.

Chapters 6, 7, and 8 are devoted to algorithms for scheduling and resource access control on one processor (i.e., a CPU, or a network link, I/O bus, a disk, and so on). Most of these algorithms are priority-driven; all of them can be implement easily on modern real-time operating systems and communication networks. The chapters adopt increasingly more complex variants of the periodic-task model: Chapter 6 starts from workloads consisting solely of independent periodic tasks that do not require any resource other than a processor. Chapter 7 adds aperiodic and sporadic tasks, and Chapter 8 adds resource contentions.

Chapter 9 is on multiprocessor and distributed systems. It introduces control and data dependencies among tasks and the end-to-end nature of their timing requirements. It then describes methods for partitioning an application into modules and assigning the modules to processors, controlling their access to resources on multiple processors, and synchronizing the execution of tasks on different processors.

Together, Chapters 6-9 give a comprehensive treatment of the RMA approach, which in essence is synonymous to fixed-priority scheduling. Most algorithms based on this approach allow application components to be added and deleted at run-time and can handle nondeterministic resource demands. The timing behavior of applications scheduled according to the algorithms are nondeterministic. However, the adverse effects of scheduling anomalies are bounded when fluctuations in resource demands are bounded. For most real-time applications, such as those described in Chapter 1, the accompanied validation techniques make it possible for us to predict fairly accurately the worstcase real-time performance of applications thus scheduled. The chapters also describe ways to schedule applications with widely varying resource demands within the deadline-driven framework. As examples, rate-based algorithms can provide timing isolation to sporadic tasks and enables us to predict the real-time performance of a distributed sporadic task independent of other tasks in the system.

Chapter 10 . Chapter 10 introduces the concept of flexible applications. A flexible application contains tasks that can trade off the qualities of their results for their time and resource demands. The flexible computation approach is a means for handling overload and increasing availability. This chapter describes workload models that capture the characteristics and requirements of flexible applications and algorithms that have been developed to schedule them. Another subject of discussion is the temporal distance model. The timing requirements of some real-time tasks can be more conveniently defined in the terms of the maximum length of time between completions of consecutive task instances. The temporal distance model captures this kind of requirement.

Chapter 11 . Chapter 11 focuses on real-time issues in communication networks, specifically, features and capabilities needed to support real-time applications. It starts by describing low-level, realtime flow control, and scheduling schemes for packet switched networks and medium access protocols for broadcast networks. It then describes resource reservation, internet and transport protocols designed for real-time applications.

Chapter 12 . The last chapter examines in depth implementation details that were ignored in earlier chapters. It consists of two parts. The first part discusses how operating systems services and mechanisms should be implemented to enhance the predictability of applications using them. Some services and mechanisms are easy to implement, have low overhead, and can make the implementation of many algorithms described in previous chapters significantly simpler, but are not provided by most commercial operating systems. This part describes examples of them.

The second part gives an overview of several commercial real-time and general purpose operating systems. It highlights good features of real-time operating systems. It explains why Windows NT and Linux, two popular general purpose operating systems, do not work well for real-time applications and how to get better predictability out of them.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)