Redox Biocatalysis: Fundamentals and Applications

( 2 )


Paves the way for new industrial applications using redox biocatalysis

Increasingly, researchers rely on the use of enzymes to perform redox processes as they search for novel industrial synthetic routes. In order to support and advance their investigations, this book provides a comprehensive and current overview of the use of redox enzymes and enzyme-mediated oxidative processes, with an emphasis on the role of redox enzymes in chemical transformations. The authors examine the ...

See more details below
$142.04 price
(Save 8%)$154.95 List Price
Other sellers (Hardcover)
  • All (8) from $104.97   
  • New (7) from $104.97   
  • Used (1) from $142.03   


Paves the way for new industrial applications using redox biocatalysis

Increasingly, researchers rely on the use of enzymes to perform redox processes as they search for novel industrial synthetic routes. In order to support and advance their investigations, this book provides a comprehensive and current overview of the use of redox enzymes and enzyme-mediated oxidative processes, with an emphasis on the role of redox enzymes in chemical transformations. The authors examine the full range of topics in the field, from basic principles to new and emerging research and applications. Moreover, they explore everything from laboratory-scale procedures to industrial manufacturing.

Redox Biocatalysis begins with a discussion of the biochemical features of redox enzymes as well as cofactors and cofactor regeneration methods. Next, the authors present a variety of topics and materials to the research and development of full-scale industrial applications, including:

  • Biocatalytic applications of redox enzymes such as dehydrogenases, oxygenases, oxidases, and peroxidases
  • Enzyme-mediated oxidative processes based on biocatalytic promiscuity
  • All the steps from enzyme discovery to robust industrial processes, including directed evolution, high-throughput screening, and medium engineering
  • Case studies tracing the development of industrial applications using biocatalytic redox reactions

Each chapter ends with concluding remarks, underscoring the key scientific principles and processes. Extensive references serve as a gateway to the growing body of research in the field.

Researchers in both academia and industry will find this book an indispensable reference for redox biotransformations, guiding them from underlying core principles to new discoveries and emerging industrial applications.

Read More Show Less

Product Details

  • ISBN-13: 9780470874202
  • Publisher: Wiley
  • Publication date: 10/30/2012
  • Edition number: 1
  • Pages: 548
  • Product dimensions: 6.20 (w) x 9.30 (h) x 1.20 (d)

Meet the Author

Daniela Gamenara, PhD, is Assistant Professor in the Organic Chemistry Department of the Faculty of Chemistry of Universidad de la República, Uruguay. After two short postdoctoral internships, her current scientific interest is the development of enzymatic methodologies for the synthesis of high added-value compounds and natural products as well, together with the use of new trends in organocatalysis for the same purposes.

Gustavo A. Seoane, PhD, is Full Professor and Head of the Organic Chemistry Department of the Faculty of Chemistry of Universidad de la República, Uruguay. His main scientific interest is the use of green procedures for the synthesis of bioactive natural products and analogs, in particular, intensive use of biotransformations to prepare polyoxygenated targets. He works actively to promote the development of biocatalysis in South America.

Patricia Saenz-Méndez, PhD, is Assistant Professor of Physical Organic Chemistry in the Faculty of Chemistry of Universidad de la República, Uruguay. She was previously appointed as postdoctoral fellow at the Örebro University, Sweden, and the National University of Ireland, Galway. Her work is devoted to the experimental and in silico development of biotechnological and organocatalytic tools for the preparation of high added-value chemicals and natural products.

Pablo Domínguez de María, PhD, is Group Leader at the Institute for Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Germany. He was previously affiliated with AkzoNobel BV in the Netherlands and Degussa AG in Germany. Dr. Domínguez de María has also worked as a technical freelance advisor on emerging technologies (e.g., catalysis) applied to sustainable chemistry ( He was awarded the Young Scientist Prize by the Iberoamerican Academy of Pharmacy.

Read More Show Less

Table of Contents


1. Enzymes Involved in Redox Reactions: Natural Sources and Mechanistic Overview 1

1.1 Motivation: Green Chemistry and Biocatalysis 1

1.2 Sources of Biocatalysts 2

1.2.1 Plants and Animals as Sources of Redox Biocatalysts 3

1.2.2 Wild-Type Microorganisms 7 Yeasts 7 Fungi 8 Bacteria 8

1.2.3 Metagenomic Assessments 9

1.3 Overview of Redox Enzymes 10

1.3.1 Dehydrogenases 13 Zn-Dependent Dehydrogenases 14 Flavin-Dependent Dehydrogenases 15 Pterin-Dependent Dehydrogenases 16 Quinoprotein Dehydrogenases 17 Dehydrogenases without Prosthetic Group 18

1.3.2 Oxygenases 19 Monooxygenases 20 Dioxygenases 38

1.3.3 Oxidases 50 Iron-Containing Oxidases 50 Copper-Containing Oxidases 51 Flavin-Dependent Oxidases 56

1.3.4 Peroxidases 61

1.4 Concluding Remarks 64

References 64

2. Natural Cofactors and Their Regeneration Strategies 86

2.1 Types of Natural Cofactors—Mechanisms 86

2.2 Cofactor Regeneration 88

2.2.1 Enzymatic Regeneration of Reduced Cofactors 88 Substrate-Assisted Method 88 Enzyme-Assisted Method 89

2.2.2 Enzymatic Regeneration of Oxidized Cofactors 92

2.2.3 Chemical Regeneration of Cofactors 94

2.2.4 Electrochemical Regeneration of Cofactors 95

2.2.5 Photochemical Regeneration of Cofactors 96

2.3 Concluding Remarks 97

References 98

3. Reactions Involving Dehydrogenases 101

3.1 General Considerations 101

3.2 Reduction of Carbonyl Groups 105

3.2.1 Reduction of Aliphatic and Aromatic Ketones 106

3.2.2 Reduction of α- and β-keto Esters and Derivatives 119

3.2.3 Reduction of Diketones 126

3.2.4 Reduction of Aldehydes 128

3.3 Racemization and Deracemization Reactions 130

3.4 Preparation of Amines 135

3.5 Reduction of C–C Double Bonds 142

3.6 Oxidation Reactions 152

3.7 Dehydrogenase-Catalyzed Redox Reactions in Natural Products 159

3.8 Concluding Remarks 164

References 165

4. Reactions Involving Oxygenases 180

4.1 Monooxygenase-Catalyzed Reactions 180

4.1.1 Hydroxylation of Aliphatic Compounds 181

4.1.2 Hydroxylation of Aromatic Compounds 187

4.1.3 Baeyer–Villiger Reactions 189 Classification and Metabolic Role of BVMOs 192 Isolated Enzymes versus Whole-Cell Systems (Wild-Type and Recombinant Microorganisms) 194 Substrate Profile of Available Baeyer–Villiger Monooxygenases 195 Synthetic Applications of BVMOs 201

4.1.4 Epoxidation of Alkenes 240

4.2 Dioxygenase-Catalyzed Reactions 251

4.2.1 Aromatic Dioxygenases 251 Dihydroxylation of Aromatic Compounds 251 Other Oxidation Reactions Performed by Aromatic Dioxygenases 274

4.2.2 Miscellaneous Dioxygenases 279 Lipoxygenase 279

4.3 Concluding Remarks 285

References 286

5. Reactions Involving Oxidases and Peroxidases 303

5.1 Oxidase-Catalyzed Reactions 304

5.1.1 Oxidases Acting on C–O Bonds 304 Galactose Oxidase 304 Pyranose Oxidase 308 Alcohol Oxidase 311 Glucose Oxidase 313 Glycolate Oxidase 313

5.1.2 Laccases and Tyrosinases (Phenol Oxidases) 315 Laccase 315 Tyrosinase and Other Polyphenol Oxidases 352

5.1.3 Oxidases Acting on C–N Bonds 361 d-Amino Acid Oxidase 361 l-Amino Acid Oxidase 368 Monoamine Oxidase 368 Copper Amine Oxidases 371

5.1.4 Miscellaneous 371 Cholesterol Oxidase 372 Vanillyl Alcohol Oxidase 373 Alditol Oxidase 373

5.2 Peroxidase-Catalyzed Reactions 375

5.2.1 Peroxidase Mediated Transformations 379 Oxidative Dehydrogenation (2 RH + H2O2 → 2 R• + 2 H2O→R-R) 379 Oxidative Halogenation (RH + H2O2 +X− + H+→RX + 2 H2O) 385 Oxygen-Transfer Reactions (RH + H2O2 → ROH + H2O) 390

5.3 Concluding Remarks 403

References 404

6. Hydrolase-Mediated Oxidations 433

6.1 Hydrolase Promiscuity and in situ Peracid Formation. Perhydrolases vs. Hydrolases. Other Promiscuous Hydrolase-Mediated Oxidations 433

6.2 Hydrolase-Mediated Bulk Oxidations in Aqueous Media (e.g., Bleaching, Disinfection, etc.) 436

6.3 Lipase-Mediated Oxidations: Prileshajev Epoxidations and Baeyer–Villiger Reactions 439

6.4 Hydrolase-Mediated Oxidation and Processing of Lignocellulosic Materials 445

6.5 Concluding Remarks 448

References 448

7. Bridging Gaps: From Enzyme Discovery to Bioprocesses 453

7.1 Context 453

7.2 Enzyme Directed Evolution and High-Throughput-Screening of Biocatalysts 454

7.3 Successful Case: Baker’s Yeast Redox Enzymes, Their Cloning, and Separate Overexpression 467

7.4 Whole-Cells vs. Isolated Enzymes: Medium Engineering 473

7.5 Beyond: Multistep Domino Biocatalytic Processes 477

7.6 Concluding Remarks 482

References 483

8. Industrial Applications of Biocatalytic Redox Reactions: From Academic Curiosities to Robust Processes 487

8.1 Motivation: Drivers for Industrial Biocatalytic Processes 487

8.2 Key Aspects in Industrial Biocatalytic Processes 488

8.3 Industrial Biocatalytic Redox Processes: Free Enzymes 492

8.4 Industrial Biocatalytic Redox Processes—Whole-Cells: The “Designer Bug” Concept and Beyond (Metabolic Engineering) 500

8.5 Concluding Remarks and Future Perspectives 511

References 516


Read More Show Less

Customer Reviews

Average Rating 5
( 2 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 2 Customer Reviews
  • Anonymous

    Posted March 25, 2014


    :D Amazig!

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 25, 2014

    Sparks of Force ~ Chapter Four

    Napoleon stammered. "Idiot!"
    Daisy was set on the ground, then the other man kicked her into the street. "Ow!" She yelped. <br>
    "Who...who are you?" She turned to ask.
    "I'm not telling you. Now, go. Go do whatever you like...Have fun." The blonde man smirked. Napoleon winced from landing on the pavement. "You..." he was lost for words.
    Daisy turned back to see them, but to her surprise....they had vanished. "Okay...this is getting really weird." She said, almost to herself.
    Napoleon stood up. "I want to go dig a hole and hide in it..." his face was drained and pale. Daisy nodded. "Yeah...well.." She noticed a car zoom past her. "Let's get out of here. I smell a forest." Her nose tingled as the woodland scents wafted past her nose.
    Following her nose, she hopped behind the building and saw a huge clearing. About a mile away, there was the treeline of an enormous forest with luscious trees and shrubs. Daisy gestured with her nose. "We can stay in there, away from humans, just for the night." She was already devising a plan.
    "How can you just - Figure that out? Are you not shocked? First our best friend has been kidnapped, then we get taken to this strange place...then this!" Napoleon sputtered. Daisy nodded. "But...we can get through this. Let's go. We'll figure out where to go in the morn - Oh my God!!" Daisy said in an excited outburst. She swiveled and touched her back. Her face crumpled. "Oh...never mind. I thought my knapsack was with me. We could call and then -"
    Napoleon touched her shoulder. "Daisy...don't try to plan anything else. Forest. Let's go." They trudged across the meadow, eyes affixed on the lush forest. With a heavy heart, Daisy followed Napoleon, this time not in the lead.
    "We come in peace." Napoleon waved his paws. They were standing in the forest in front of an entire tribe of rabbits. All of the wild rabbits blinked. Daisy felt fear in her gut.
    Finally, a gray rabbit stepped forward. "Welcome to The Birch Tribe of Lagomorphia. I'm Gray. And who might this be?" He was looking directly at Daisy. "Oh, er, the name's Daisy. Nice to meet you, Gray." <br>
    Napoleon rolled his eyes. Gray went on. "There's Reed, Lotus, Willow, Pansy, Rock..." he gestured with his paw. Two rabbits hopped forward, the one male glaring at Gray.
    "Who are these visitors and why are they here?" He growled, staring at Daisy and Napoleon. Gray stood his ground. "This fine young lady is Daisy, and with her..." he looked at Napoleon. "Napoleon." The rat replied icily.
    "You know how we feel about letting strangers in." The male rabbit snapped in a low tone. <br>
    "We don't need to stay here. We'll leave." Napoleon offered, obviously wanting to leave anyways.
    The male rabbit's mate pressed against him. "One night? They look tired, Boulder." She murmured silkily. "And the rat's adooorable." Napoleon flushed at what he had just heard. Boulder made a hissing noise. "Fine. One night."

    Was this review helpful? Yes  No   Report this review
Sort by: Showing all of 2 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)