Refinery Engineering: Integrated Process Modeling and Optimization [NOOK Book]

Overview

Petroleum refining is one of the most important yet challenging industries, and continues to be a major contributor in the production of transportation fuels and chemicals. Current economic, regulatory and environmental concerns place significant pressure on refiners to upgrade and optimize the refining process. At the same time, new product demands are urging refiners to explore alternative processing units and feedstocks.

This textbook represents a pioneering and comprehensive...

See more details below
Refinery Engineering: Integrated Process Modeling and Optimization

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$74.49
BN.com price
(Save 42%)$130.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

Petroleum refining is one of the most important yet challenging industries, and continues to be a major contributor in the production of transportation fuels and chemicals. Current economic, regulatory and environmental concerns place significant pressure on refiners to upgrade and optimize the refining process. At the same time, new product demands are urging refiners to explore alternative processing units and feedstocks.

This textbook represents a pioneering and comprehensive introduction to this complex subject, using many of the tools and techniques currently employed in modern refinery process simulation.

Adopting a systematic and practical approach, the authors include the theory, case studies and hands-on workshops, explaining how to work with real data. As a result, senior-level undergraduate and graduate students, as well as industrial engineers learn how to develop and use the latest computer models for the predictive modeling and optimization of integrated refinery processes.

Additional material is available online providing relevant spreadsheets and simulation files for all the models and examples presented in the book.

Read More Show Less

Product Details

  • ISBN-13: 9783527666850
  • Publisher: Wiley
  • Publication date: 3/1/2013
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 522
  • File size: 14 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Ai-Fu Chang received his Ph.D. in the Department of Chemical Engineering at Virginia Polytechnic Institute and State University in September, 2011. He received his B.S. in chemical engineering from National Taiwan University in 2001. He completed his doctoral dissertation on integrated process modeling and product design of biodiesel manufacturing, and refinery reaction and fractionation systems. The latter was the basis of this textbook. He has worked on several industrial modeling projects, including poly(acrylonitrile-vinyl acetate), hydrocracking, and biodiesel. These projects were collaborative efforts between Virginia Tech, Aspen Technology, and industrial manufacturers. He is currently employed by Chevron Phillips Chemical Company.

Kiran Pashikanti was a PhD student in the Department of Chemical Engineering at Virginia Tech. He received his B.S. in chemical engineering from Virginia Commonwealth University in 2005, and his Ph.D. in chemical engineering from Virginia Tech in September, 2011. He has worked on several industrial modeling projects on integrated modeling of reaction and fractionation systems, and of carbon-dioxide capture processes. This textbook grows out of his doctoral dissertation on the predictive modeling of fluid catalytic cracking and catalytic reforming processes. He is currently employed by Chevron Phillips Chemical Company.

Prof. Y.A. Liu is the Frank C. Vilbrandt Endowed Professor of Chemical Engineering at Virginia Polytechnic Institute and State University. He received his B.S. (1967), M.S. (1970), and Ph.D. (1974) degrees from National Taiwan University, Tufts University and Princeton University, respectively. He has published numerous papers and eight books, including four pioneering chemical engineering textbooks on artificial intelligence in chemical engineering (with Thomas E. Quantrille) and on neural networks in bioprocessing and chemical engineering (with D. Richard Baughman). Professor Liu's contributions to chemical engineering teaching and research have been recognized by university, national and international awards and he is a Fellow of the American Institute of Chemical Engineers. For his contributions to teaching, research and industrial outreach, he received the Virginia Outstanding Faculty Award from Governor Jim Gilmore in 2000. He also received the National Friendship Award from China's Premier Zhu Ronjie in 2000.
Read More Show Less

Table of Contents

PREFACE

CHARACTERIZATION, PHYSICAL AND THERMODYNAMIC PROPERTIES OF OIL FRACTIONS
Crude Assay
Pseudocomponent Generation Based on Boiling-Point Ranges
Workshop 1.1 -
Interconvert Distillation Curves
Workshop 1.2 -
Extrapolate an Incomplete Distillation Curve
Workshop 1.3 -
Calculate MeABP of a Given Assay
Workshop 1.4 -
Duplicate the Oil Fraction in Aspen HYSYS/Refining
Property Requirements for Refinery Process Models
Physical Properties
Process Thermodynamics
Miscellaneous Physical Properties for Refinery Modeling
Conclusions
Nomenclature
References

ATMOSPHERIC DISTILLATION UNIT
Introduction
Scope of the Chapter
Process Overview
Model Development
Feed Characterization
Data Requirements and Validation
Representative Atmospheric Distillation Unit
Building the Model in Aspen HYSYS
Results
Model Applications to Process Optimization
Workshop 2.1 -
Rebuild Model Using "Backblending" Procedure
Workshop 2.2 -
Investigate Changes in Product Profiles with New Product Demands
Conclusions
Nomenclature
References

VACUUM DISTILLATION UNIT
Process Description
Data Reconciliation
Model Implementation
Model Applications toProcess Optimization -
VDU Deep-Cut Operation
Workshop -
Using Aspen HYSYS/Refining to Implement Deep-Cut Operation
References

PREDICTIVE MODELING OF THE FLUID CATALYTIC CRACKING (FCC) PROCESS
Introduction
Process Description
Process Chemistry
Literature Review
Aspen HYSYS/Petroleum Refining FCC Model
Calibrating the Aspen HYSYS/Petroleum Refining FCC Model
Fractionation
Mapping Feed Information to Kinetic Lumps
Overall Modeling Strategy
Results
Model Applications to Process Optimization
Model Application to Refinery Production Planning
Workshop 4.1: Guide for Modeling FCC Units in Aspen HYSYS/Petroleum Refining
Workshop 4.2: Calibrating Basic FCC Model
Workshop 4.3: Build Main Fractionator and Gas Plant System
Workshop 4.4: Model Applications to Process Optimization -Perform Case Study to Identify Different Gasoline Production Scenarios
Workshop 4.5: Model Application to Production Planning- Generate DELTA-BASE Vectors for Linear-Programming (LP)-Based Production Planning
Conclusions
Nomenclature
References

PREDICTIVE MODELING OF THE CONTINUOUS CATALYST REGENERATION (CCR)
REFORMING PROCESS
Introduction
Process Overview
Process Chemistry
Literature Review
Aspen HYSYS/Petroleum Refining Catalytic Reformer Model
Thermophysical Properties
Fractionation System
Feed Characterization
Model Implementation
Overall Modeling Strategy
Results
Model Applications to Process Optimization
Model Applications to Refinery Production Planning
Workshop 5.1: Guide for Modeling CCR Units in Aspen HYSYS/Petroleum Refining
Workshop 5.2: Model Calibration
Workshop 5.3: Build a Downstream Fractionation
Workshop 5.4: Case Study to Vary RON and Product Distribution Profile
Conclusions
Nomenclature
References

PREDICTIVE MODELING OF THE HYDROPROCESSING UNITS
Introduction
Aspen HYSYS/Refining HCR Modeling Tool
Process Description
Model Development
Modeling Results of MP HCR Process
Modeling Results of HP HCR Process
Model Applications to Process Optimization
Model Application -
Delta-Base Vector Generation
Conclusion
Workshop 6.1 -
Build Preliminary Reactor Model of HCR Process
Workshop 6.2 -
Calibrate Preliminary Reactor Model to Match Plant Data
Workshop 6.3 -
Model Applications to Process Optimization
Workshop 6.4 -
Connect Reactor Model to Fractionator Simulation
Nomenclature
References
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)