Relativity: The Special and the General Theory / Edition 60

Paperback (Print)
Buy Used
Buy Used from BN.com
$7.64
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $1.99
Usually ships in 1-2 business days
(Save 84%)
Other sellers (Paperback)
  • All (18) from $1.99   
  • New (8) from $7.08   
  • Used (10) from $1.99   

Overview

Robert Geroch builds on Einstein's work with commentary that addresses the ideas at the heart of the theory, bringing a modern understanding of relativity to the text. He elucidates how special relativity is a reconciliation of the contradictions between the nature of light and the principle of relativity; he expands on Einstein's treatment of the geometry of space-time and the fundamental notion of an "event"; he explains in detail, but without technical language, the equivalence of inertial and gravitational mass, a cornerstone of general relativity.

This book, a collection of Einstein's own popular writings on his work, describes the meaning of his main theories in a way virtually everyone can understand.

Read More Show Less

Editorial Reviews

Time
He was unfathomably profound - the genius among geniuses who discovered, merely by thinking about it, that the universe was not as it seemed.
Read More Show Less

Product Details

  • ISBN-13: 9780143039822
  • Publisher: Penguin Publishing Group
  • Publication date: 7/25/2006
  • Series: Penguin Classics Series
  • Edition description: Reprint
  • Edition number: 60
  • Pages: 160
  • Sales rank: 329,658
  • Product dimensions: 5.09 (w) x 7.77 (h) x 0.42 (d)

Meet the Author

Albert Einstein, a gentleman who belongs to the elite league of Newton, Tesla, Maxwell and considered to be the greatest scientist of 20th century. Born in Germany, and worked as a clerk in the patent office before revolutionizing the world of physics, Einstein with his incredible achievements in scientific world has become synonymous to the word genius. He provided the world, two of the most brilliant concepts of physics through his theories of relativity, and won the Noble Prize in Physics for his work on Photoelectric Effect, which eventually become the foundation stone for tremendous developments in electronic technologies and quantum theory. Einstein is not only celebrated as the greatest physicists of all the time but he was also a wonderful human being and philosopher. World War II and presence of Adolf Hitler in Germany forced him to stay in the US during the period, where he consistently tried hard to warn and evade the application of nuclear fission as a weapon of mass destruction. He collaborated and interacted with many extraordinary minds of his time contributing to the world of physics and humanity as a whole. His unmatched intellectual imagination collaged with his immense interest in music, philosophy and humanity makes him the greatest personality that scientific world and mankind have ever seen.
Read More Show Less

Read an Excerpt

Relativity

The Special & The General Theory


By Albert Einstein

PRINCETON UNIVERSITY PRESS

Copyright © 2015 Princeton University Press and The Hebrew University of Jerusalem
All rights reserved.
ISBN: 978-1-4008-6566-6



CHAPTER 1

Physical Meaning of Geometrical Propositions


In your schooldays most of you who read this book made acquaintance with the noble building of Euclid's geometry, and you remember—perhaps with more respect than love—the magnificent structure, on the lofty staircase of which you were chased about for uncounted hours by conscientious teachers. By reason of your past experience, you would certainly regard everyone with disdain who should pronounce even the most out-of-the-way proposition of this science to be untrue. But perhaps this feeling of proud certainty would leave you immediately if some one were to ask you: "What, then, do you mean by the assertion that these propositions are true?" Let us proceed to give this question a little consideration.

Geometry sets out from certain conceptions such as "plane," "point," and "straight line," with which we are able to associate more or less definite ideas, and from certain simple propositions (axioms) which, in virtue of these ideas, we are inclined to accept as "true." Then, on the basis of a logical process, the justification of which we feel ourselves compelled to admit, all remaining propositions are shown to follow from those axioms, i.e. they are proven. A proposition is then correct ("true") when it has been derived in the recognised manner from the axioms. The question of the "truth" of the individual geometrical propositions is thus reduced to one of the "truth" of the axioms. Now it has long been known that the last question is not only unanswerable by the methods of geometry, but that it is in itself entirely without meaning. We cannot ask whether it is true that only one straight line goes through two points. We can only say that Euclidean geometry deals with things called "straight lines," to each of which is ascribed the property of being uniquely determined by two points situated on it. The concept "true" does not tally with the assertions of pure geometry, because by the word "true" we are eventually in the habit of designating always the correspondence with a "real" object; geometry, however, is not concerned with the relation of the ideas involved in it to objects of experience, but only with the logical connection of these ideas among themselves.

It is not difficult to understand why, in spite of this, we feel constrained to call the propositions of geometry "true." Geometrical ideas correspond to more or less exact objects in nature, and these last are undoubtedly the exclusive cause of the genesis of those ideas. Geometry ought to refrain from such a course, in order to give to its structure the largest possible logical unity. The practice, for example, of seeing in a "distance" two marked positions on a practically rigid body is something which is lodged deeply in our habit of thought. We are accustomed further to regard three points as being situated on a straight line, if their apparent positions can be made to coincide for observation with one eye, under suitable choice of our place of observation.

If, in pursuance of our habit of thought, we now supplement the propositions of Euclidean geometry by the single proposition that two points on a practically rigid body always correspond to the same distance (line-interval), independently of any changes in position to which we may subject the body, the propositions of Euclidean geometry then resolve themselves into propositions on the possible relative position of practically rigid bodies. Geometry which has been supplemented in this way is then to be treated as a branch of physics. We can now legitimately ask as to the "truth" of geometrical propositions interpreted in this way, since we are justified in asking whether these propositions are satisfied for those real things we have associated with the geometrical ideas. In less exact terms we can express this by saying that by the "truth" of a geometrical proposition in this sense we understand its validity for a construction with ruler and compasses.

Of course the conviction of the "truth" of geometrical propositions in this sense is founded exclusively on rather incomplete experience. For the present we shall assume the "truth" of the geometrical propositions, then at a later stage (in the general theory of relativity) we shall see that this "truth" is limited, and we shall consider the extent of its limitation.

CHAPTER 2

The System of Co-ordinates


On the basis of the physical interpretation of distance which has been indicated, we are also in a position to establish the distance between two points on a rigid body by means of measurements. For this purpose we require a "distance" (rod S) which is to be used once and for all, and which we employ as a standard measure. If, now, A and B are two points on a rigid body, we can construct the line joining them according to the rules of geometry; then, starting from A, we can mark off the distance S time after time until we reach B. The number of these operations required is the numerical measure of the distance A B. This is the basis of all measurement of length.

Every description of the scene of an event or of the position of an object in space is based on the specification of the point on a rigid body (body of reference) with which that event or object coincides. This applies not only to scientific description, but also to everyday life. If I analyse the place specification "Trafalgar Square, London,"· I arrive at the following result. The earth is the rigid body to which the specification of place refers; "Trafalgar Square, London," is a well-defined point, to which a name has been assigned, and with which the event coincides in space.

This primitive method of place specification deals only with places on the surface of rigid bodies, and is dependent on the existence of points on this surface which are distinguishable from each other. But we can free ourselves from both of these limitations without altering the nature of our specification of position. If, for instance, a cloud is hovering over Trafalgar Square, then we can determine its position relative to the surface of the earth by erecting a pole perpendicularly on the Square, so that it reaches the cloud. The length of the pole measured with the standard measuring-rod, combined with the specification of the position of the foot of the pole, supplies us with a complete place specification. On the basis of this illustration, we are able to see the manner in which a refinement of the conception of position has been developed.

(a) We imagine the rigid body, to which the place specification is referred, supplemented in such a manner that the object whose position we require is reached by the completed rigid body.

(b) In locating the position of the object, we make use of a number (here the length of the pole measured with the measuring-rod) instead of designated points of reference.

(c) We speak of the height of the cloud even when the pole which reaches the cloud has not been erected. By means of optical observations of the cloud from different positions on the ground, and taking into account the properties of the propagation of light, we determine the length of the pole we should have required in order to reach the cloud.

From this consideration we see that it will be advantageous if, in the description of position, it should be possible by means of numerical measures to make ourselves independent of the existence of marked positions (possessing names) on the rigid body of reference. In the physics of measurement this is attained by the application of the Cartesian system of co-ordinates.

This consists of three plane surfaces perpendicular to each other and rigidly attached to a rigid body. Referred to a system of co-ordinates, the scene of any event will be determined (for the main part) by the specification of the lengths of the three perpendiculars or co-ordinates (x, y, z) which can be dropped from the scene of the event to those three plane surfaces. The lengths of these three perpendiculars can be determined by a series of manipulations with rigid measuring-rods performed according to the rules and methods laid down by Euclidean geometry.

In practice, the rigid surfaces which constitute the system of co-ordinates are generally not available; furthermore, the magnitudes of the co-ordinates are not actually determined by constructions with rigid rods, but by indirect means. If the results of physics and astronomy are to maintain their clearness, the physical meaning of specifications of position must always be sought in accordance with the above considerations.

We thus obtain the following result: Every description of events in space involves the use of a rigid body to which such events have to be referred. The resulting relationship takes for granted that the laws of Euclidean geometry hold for "distances," the "distance" being represented physically by means of the convention of two marks on a rigid body.

CHAPTER 3

Space and Time in Classical Mechanics


The purpose of mechanics is to describe how bodies change their position in space with "time." I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.

It is not clear what is to be understood here by "position" and "space." I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the "positions" traversed by the stone lie "in reality" on a straight line or on a parabola? Moreover, what is meant here by motion "in space"? From the considerations of the previous section the answer is self-evident. In the first place we entirely shun the vague word "space," of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by "motion relative to a practically rigid body of reference." The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of "body of reference" we insert "system of co-ordinates," which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory (lit. "path-curve"), but only a trajectory relative to a particular body of reference.

In order to have a complete description of the motion, we must specify how the body alters its position with time; i.e. for every point on the trajectory it must be stated at what time the body is situated there. These data must be supplemented by such a definition of time that, in virtue of this definition, these time-values can be regarded essentially as magnitudes (results of measurements) capable of observation. If we take our stand on the ground of classical mechanics, we can satisfy this requirement for our illustration in the following manner. We imagine two clocks of identical construction; the man at the railway-carriage window is holding one of them, and the man on the footpath the other. Each of the observers determines the position on his own reference-body occupied by the stone at each tick of the clock he is holding in his hand. In this connection we have not taken account of the inaccuracy involved by the finiteness of the velocity of propagation of light. With this and with a second difficulty prevailing here we shall have to deal in detail later.

CHAPTER 4

The Galileian System of Co-ordinates


A is well known, the fundamental law of the mechanics of Galilei-Newton, which is known as the law of inertia, can be stated thus: A body removed sufficiently far from other bodies continues in a state of rest or of uniform motion in a straight line. This law not only says something about the motion of the bodies, but it also indicates the reference-bodies or systems of co-ordinates, permissible in mechanics, which can be used in mechanical description. The visible fixed stars are bodies for which the law of inertia certainly holds to a high degree of approximation. Now if we use a system of co-ordinates which is rigidly attached to the earth, then, relative to this system, every fixed star describes a circle of immense radius in the course of an astronomical day, a result which is opposed to the statement of the law of inertia. So that if we adhere to this law we must refer these motions only to systems of coordinates relative to which the fixed stars do not move in a circle. A system of co-ordinates of which the state of motion is such that the law of inertia holds relative to it is called a "Galileian system of co-ordinates." The laws of the mechanics of Galilei-Newton can be regarded as valid only for a Galileian system of co-ordinates.

CHAPTER 5

The Principle of Relativity (in the Restricted Sense)


In order to attain the greatest possible clearness, let us return to our example of the railway carriage supposed to be travelling uniformly. We call its motion a uniform translation ("uniform" because it is of constant velocity and direction, "translation" because although the carriage changes its position relative to the embankment yet it does not rotate in so doing). Let us imagine a raven flying through the air in such a manner that its motion, as observed from the embankment, is uniform and in a straight line. If we were to observe the flying raven from the moving railway carriage, we should find that the motion of the raven would be one of different velocity and direction, but that it would still be uniform and in a straight line. Expressed in an abstract manner we may say: If a mass m is moving uniformly in a straight line with respect to a co-ordinate system K, then it will also be moving uniformly and in a straight line relative to a second co-ordinate system K', provided that the latter is executing a uniform translatory motion with respect to K. In accordance with the discussion contained in the preceding section, it follows that:

If K is a Galileian co-ordinate system, then every other co-ordinate system K' is a Galileian one, when, in relation to K, it is in a condition of uniform motion of translation. Relative to K' the mechanical laws of Galilei-Newton hold good exactly as they do with respect to K.


(Continues...)

Excerpted from Relativity by Albert Einstein. Copyright © 2015 Princeton University Press and The Hebrew University of Jerusalem. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

Introduction
Relativity : the special and general theory 1
1 Physical meaning of geometrical propositions 5
2 The system of co-ordinates 9
3 Space and time in classical mechanics 13
4 The Galileian system of co-ordinates 16
5 The principle of relativity (in the restricted sense) 18
6 The theorem of the addition of velocities employed in classical mechanics 23
7 The apparent incompatibility of the law of propagation of light with the principle of relativity 25
8 On the idea of time in physics 29
9 The relativity of simultaneity 34
10 On the relativity of the conception of distance 38
11 The Lorentz transformation 40
12 The behaviour of measuring-rods and clocks in motion 47
13 Theorem of the addition of velocities : the experiment of Fizeau 51
14 The heuristic value of the theory of relativity 56
15 General results of the theory 58
16 Experience and the special theory of relativity 65
17 Minkowski's four-dimensional space 72
18 Special and general principle of relativity 77
19 The gravitational field 82
20 The equality of inertial and gravitational mass as an argument for the general postulate of relativity 86
21 In what respects are the foundations of classical mechanics and of the special theory of relativity unsatisfactory? 92
22 A few inferences from the general principle of relativity 95
23 Behaviour of clocks and measuring-rods on a rotating body of reference 101
24 Euclidean and non-Euclidean continuum 106
25 Gaussian co-ordinates 111
26 The space-time continuum of the special theory of relativity considered as a Euclidean continuum 116
27 The space-time continuum of the general theory of relativity is not a Euclidean continuum 119
28 Exact formulation of the general principle of relativity 123
29 The solution of the problem of gravitation on the basis of the general principle of relativity 127
30 Cosmological difficulties of Newton's theory 133
31 The possibility of a "finite" and yet "unbounded" universe 136
32 The structure of space according to the general theory of relativity 143
App. 1 Simple derivation of the Lorentz transformation 147
App. 2 Minkowski's four-dimensional space ("world") 155
App. 3 The experimental confirmation of the general theory of relativity 158
Commentary 171
The cultural legacy of relativity theory 225
Read More Show Less

Introduction

Preface

The present book is intended, as far as possible, to give an exact insight into the theory of Relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics. The work presumes a standard of education corresponding to that of a university matriculation examination, and, despite the shortness of the book, a fair amount of patience and force of will on the part of the reader. The author has spared himself no pains in his endeavour to present the main ideas in the simplest and most intelligible form, and on the whole, in the sequence and connection in which they actually originated. In the interest of clearness, it appeared to me inevitable that I should repeat myself frequently, without paying the slightest attention to the elegance of the presentation. I adhered scrupulously to the precept of that brilliant theoretical physicist, L. Boltzmann, according to whom matters of elegance ought to be left to the tailor and to the cobbler. I make no pretence of having with-held from the reader difficulties which are inherent to the subject. On the other hand, I have purposely treated the empirical physical foundations of the theory in a "step-motherly" fashion, so that readers unfamiliar with physics may not feel like the wanderer who was unable to see the forest for trees. May the book bring some one a few happy hours of suggestive thought!

A. EINSTEIN

December, 1916


© Copyright Pearson Education. All rights reserved.

Read More Show Less

Customer Reviews

Average Rating 3.5
( 79 )
Rating Distribution

5 Star

(30)

4 Star

(18)

3 Star

(13)

2 Star

(9)

1 Star

(9)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
See All Sort by: Showing 1 – 20 of 80 Customer Reviews
  • Anonymous

    Posted March 18, 2003

    This book made Relativity intuitive.

    Six years of college physics courses never made relativity intuitively understandable for me. Academic texts concentrate on mathematical descriptions, manipulations and proofs to present theories. Einstein, in simple text, leads us through his very logical and understandable thought process, which led him to the relativity theories. I could manipulate the mathematics of relativity and come up with answers but never really had an intuitive feel for what really is going on till I read this book. I only wish I had read this first before plowing through graduate physics courses. The only other book I have ever read that was more enlightening was the Bible.

    9 out of 12 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 2, 2011

    Bad conversion to e-book.

    Would have probably been a good read, but the equations are all missing.

    Everywhere you expect to see an equation, is a tag that says:

    eq. 'n': file eq'n'.gif

    5 out of 8 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted October 5, 2012

    fatally flawed version - equations missing.

    While this is obviously an excellent book that everyone should have to read at some point in their life, this version suffers---as others have warned---from a glitch that fails to print the majority of the equations. DO NOT BUY THIS VERSION, find a complete version somewhere else.

    2 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 9, 2012

    equations missing

    equations missing on android. Don't spend a penny on this version; get it free (with equations) as an android play store book.

    1 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 5, 2012

    Difficult to enjoy

    Text conversion fail. Spend enough time translating to lose the author... not good for this kind of book.

    1 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted June 24, 2012

    Equations do not render (references a .gif file) on PC app or on

    Equations do not render (references a .gif file) on PC app or on the Nook Glowlight

    1 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 29, 2003

    do not be content with just this book

    I hate bashing titles-- especially someone with as great an intellect as A. Einstein, but I would rather those wanting to learn about relativity not take the short road nor try to learn it half way. This book is no way an introduction of any sort. It's that snack that ruins the dinner. Herman Weyl's Space-Time-Matter is a difficult book to follow, but there is enough philosophy there to hold your attention. Many times we focus on Einstein as a person when we should be more interested in the theory-- especially the general theory.

    1 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted May 16, 2015

    It was awesome

    The book really helped me with my project. It gave me so many details.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 29, 2014

    .

    .

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 11, 2014

    Couldnt

    Understand anything.

    Was this review helpful? Yes  No   Report this review
  • Posted February 1, 2013

    more from this reviewer

    A Handbook for Relativity

    Absolutely essential for the millenium.The door,the lock,and the key for theoretical physics.It opens a window,for the layman,about his options in the real world.'May it provide someone with a few hours of suggestive thought'..mfd

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted May 6, 2012

    This is a very good book. Just got it yesterday and I'm already

    This is a very good book. Just got it yesterday and I'm already about halfway done. I dearly recommend this book.

    0 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 19, 2012

    Hard to read

    Text conversion failed horribly , unable to get over mispelled words

    0 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 16, 2012

    ?

    I love him

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted December 28, 2010

    How could you not give this 5 stars?!

    Seriously. Read it.

    0 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted December 28, 2010

    Fascinating, as new today as it was when written

    An excellent start for those who are interested in relativity. Would be an excellent book for science teachers in high school to discuss with their students.

    Was this review helpful? Yes  No   Report this review
  • Posted December 10, 2010

    more from this reviewer

    Amazing and easy-to-read!

    I found this fascinating. This is not written for those with a PhD. It is technical, but understandable and compelling. The reason I include it on this list is twofold:

    * It is a great example of perspective and reevaluating what you think to be true
    * It is also a great example of taking a complicated or very different idea and logically walking the reader through the reasoning to an inevitable conclusion.

    Was this review helpful? Yes  No   Report this review
  • Posted January 17, 2010

    I Also Recommend:

    Interesting to read Albert Einsteins own (translated) words.

    This book avoids the mathematics required for a complete grasp of the subject. Without the more advanced mathematics necessary for a complete understanding of this subject, I must be satisfied with trying to understand the basics of the theory. A few current books advance a few steps forward in explaining relativity subjects. Nevertheless it is very interesting to read Einsteins own explanation of relativity.

    Was this review helpful? Yes  No   Report this review
  • Posted July 25, 2009

    Surprisingly well-written.

    Though this treatise deals with a difficult subject, Einstein gains obvious benefit from his background as a teacher. A bit redundant, and at times overly reliant on quantification and graphical representation of research findings, I would still recommend. A good primer for early astrophysics research.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted September 7, 2004

    Superb

    This book makes you wonder. This man was such a genius. How could one comprehedn such amazing things? Well this book is sure a good way to start.

    Was this review helpful? Yes  No   Report this review
See All Sort by: Showing 1 – 20 of 80 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)