Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Reviews in Computational Chemistry / Edition 1

Reviews in Computational Chemistry / Edition 1

by Kenny B. Lipkowitz

See All Formats & Editions

ISBN-10: 0470112816

ISBN-13: 9780470112816

Pub. Date: 06/22/2007

Publisher: Wiley

This volume, like those prior to it, features pedagogically driven reviews by experts in various fields of computational chemistry. Volume 25 contains: eight chapters covering the glass transition in polymer melts, atomistic modeling of friction, the computation of free volume, structural order and entropy of liquids and glasses, the reactivity of materials at extreme


This volume, like those prior to it, features pedagogically driven reviews by experts in various fields of computational chemistry. Volume 25 contains: eight chapters covering the glass transition in polymer melts, atomistic modeling of friction, the computation of free volume, structural order and entropy of liquids and glasses, the reactivity of materials at extreme conditions, magnetic properties of transition metal clusters, multiconfigurational quantum methods for the treatment of heavy metals, recursive solutions to large eigenvalue problems, and the development and uses of artificial intelligence in chemistry.

Product Details

Publication date:
Reviews in Computational Chemistry Series , #31
Product dimensions:
6.50(w) x 9.65(h) x 1.25(d)

Table of Contents

Determining the Glass Transition in Polymer Melts   Wolfgang Paul     1
Phenomenology of the Glass Transition     2
Model Building     7
Chemically Realistic Modeling     7
Coarse-Grained Models     11
Coarse-Grained Models of the Bead-Spring Type     11
The Bond-Fluctuation Lattice Model     11
Simulation Methods     13
Monte Carlo Methods     13
Molecular Dynamics Method     17
Thermodynamic Properties     18
Dynamics in Super-Cooled Polymer Melts     26
Dynamics in the Bead-Spring Model     34
Dynamics in 1,4-Polybutadiene     40
Dynamic Heterogeneity     50
Summary     54
Acknowledgments     56
References     57
Atomistic Modeling of Friction   Nicholas J. Mosey   Martin H. Muser     67
Introduction     67
Theoretical Background     69
Friction Mechanisms     70
Load-Dependence of Friction     74
Velocity-Dependence of Friction     76
Role of Interfacial Symmetry     77
Computational Aspects     80
SurfaceRoughness     81
Imposing Load and Shear     83
Imposing Constant Temperature     85
Bulk Systems     91
Computational Models     97
Selected Case Studies     105
Instabilities, Hysteresis, and Energy Dissipation     105
The Role of Atomic-Scale Roughness     109
Superlubricity     112
Self-Assembled Monolayers     116
Tribochemistry     117
Concluding Remarks     120
Acknowledgments     120
References     120
Computing Free Volume, Structural Order, and Entropy of Liquids and Glasses   Jeetain Mittal   William P. Krekelberg   Jeffrey R. Errington   Thomas M. Truskett     125
Introduction     125
Metrics for Structural Order     127
Crystal-Independent Structural Order Metrics     128
Structural Ordering Maps     132
Free Volume     136
Identifying Cavities and Computing Their Volumes     138
Computing Free Volumes     139
Computing Thermodynamics from Free Volumes     140
Relating Dynamics to Free Volumes     141
Entropy     144
Testing the Adam-Gibbs Relationship     149
An Alternative to Adam-Gibbs?     151
Conclusions     152
Acknowledgments     152
References     153
The Reactivity of Energetic Materials at Extreme Conditions   Laurence E. Fried     159
Introduction     159
Chemical Equilibrium     161
Atomistic Modeling of Condensed-Phase Reactions     171
First Principles Simulations of High Explosives     179
Conclusions     184
Acknowledgments     184
References     184
Magnetic Properties of Atomic Clusters of the Transition Elements   Julio A. Alonso     191
Introduction     191
Basic Concepts     192
Experimental Studies of the Dependence of the Magnetic Moments with Cluster Size     195
Simple Explanation of the Decay of the Magnetic Moments with Cluster Size     196
Tight Binding Method     198
Tight Binding Approximation for the d Electrons     198
Introduction of s and p Electrons     200
Formulation of the Tight Binding Method in the Notation of Second Quantization     200
Spin-Density Functional Theory     203
General Density Functional Theory      203
Spin Polarization in Density Functional Theory     205
Local Spin-Density Approximation (LSDA)     208
Noncollinear Spin Density Functional Theory     209
Measurement and Interpretation of the Magnetic Moments of Nickel Clusters     211
Interpretation Using Tight Binding Calculations     211
Influence of the s Electrons     217
Density Functional Calculations for Small Nickel Clusters     219
Orbital Polarization     219
Clusters of Other 3d Elements     225
Chromium and Iron Clusters     225
Manganese Clusters     229
Clusters of the 4d Elements     234
Rhodium Clusters     235
Ruthenium and Palladium Clusters     237
Effect of Adsorbed Molecules     237
Determination of Magnetic Moments by Combining Theory and Photodetachment Spectroscopy     239
Summary and Prospects     240
Calculation of the Density of Electronic States within the Tight Binding Theory by the Method of Moments     241
Acknowledgments     243
References     243
Transition Metal- and Actinide-Containing Systems Studied with Multiconfigurational Quantum Chemical Methods   Laura Gagliardi     249
Introduction      249
The Multiconfigurational Approach     251
The Complete Active Space SCF Method     252
Multiconfigurational Second-Order Perturbation Theory, CASPT2     253
Treatment of Relativity     257
Relativistic AO Basis Sets     259
The Multiple Metal-Metal Bond in [Characters not reproducible] and Related Systems     259
The Cr-Cr Multiple Bond     264
Cu[subscript 2]O[subscript 2] Theoretical Models     265
Spectroscopy of Triatomic Molecules Containing One Uranium Atom     267
Actinide Chemistry in Solution     269
The Actinide-Actinide Chemical Bond     270
Inorganic Chemistry of Diuranium     274
Conclusions     278
Acknowledgments     279
References     279
Recursive Solutions to Large Eigenproblems in Molecular Spectroscopy and Reaction Dynamics   Hua Guo     285
Introduction     285
Quantum Mechanics and Eigenproblems     285
Discretization     286
Direct Diagonalization     289
Scaling Laws and Motivation for Recursive Diagonalization     291
Recursion and the Krylov Subspace     292
Lanczos Recursion     293
Exact Arithmetic      293
Finite-Precision Arithmetic     296
Extensions of the Original Lanczos Algorithm     300
Transition Amplitudes     303
Expectation Values     307
Chebyshev Recursion     308
Chebyshev Operator and Cosine Propagator     308
Spectral Method     310
Filter-Diagonalization     313
Filter-Diagonalization Based on Chebyshev Recursion     313
Low-Storage Filter-Diagonalization     317
Filter-Diagonalization Based on Lanczos Recursion     319
Applications     326
Bound States and Spectroscopy     326
Reaction Dynamics     327
Lanczos vs. Chebyshev     329
Summary     330
Acknowledgments     332
References     332
Development and Uses of Artificial Intelligence in Chemistry   Hugh Cartwright     349
Introduction     349
Evolutionary Algorithms     350
Principles of Genetic Algorithms     350
Genetic Algorithm Implementation     352
Why Does the Genetic Algorithm Work?     358
Where Is the Learning in the Genetic Algorithm?     361
What Can the Genetic Algorithm Do?      362
What Can Go Wrong with the Genetic Algorithm?     365
Neural Networks     366
Neural Network Principles     366
Neural Network Implementation     368
Why Does the Neural Network Work?     373
What Can We Do with Neural Networks?     374
What Can Go Wrong?     378
Self-Organizing Maps     380
Where Is The Learning?     382
Some Applications of SOMs     384
Expert Systems     385
Conclusion     386
References     386
Author Index     391
Subject Index     409

Customer Reviews

Average Review:

Post to your social network


Most Helpful Customer Reviews

See all customer reviews