BN.com Gift Guide

Overview

Robust Statistics, Second Edition includes four new chapters on the following topics: robust tests; small sample asymptotics; breakdown point; and Bayesian robustness. A new section on time series has also been included. The first edition of this book was the first systematic, book-length treatment of robust statistics. The book begins with a general introduction and the formal mathematical background behind qualitative and quantitative robustness. A solid foundation of robust statistics for both the theoretical ...
See more details below
Robust Statistics

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$79.49
BN.com price
(Save 42%)$139.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

Robust Statistics, Second Edition includes four new chapters on the following topics: robust tests; small sample asymptotics; breakdown point; and Bayesian robustness. A new section on time series has also been included. The first edition of this book was the first systematic, book-length treatment of robust statistics. The book begins with a general introduction and the formal mathematical background behind qualitative and quantitative robustness. A solid foundation of robust statistics for both the theoretical and the applied statistician is provided. The book successfully reorganizes, summarizes, and extends information that has been available in part thus far. Concepts are stressed throughout rather than mathematical completeness, and selected numerical algorithms for computing robust estimates, as well as convergence proofs, are provided. Quantitative robustness information for a variety of estimates is contained within tables throughout.
Read More Show Less

Editorial Reviews

From the Publisher
"A comprehensive introduction and discussion on the formal mathematical background behind qualitative and quantitative robustness is provided, and subsequent chapters delve into basic types of scale estimates, asymptotic minimax theory, regression, robust covariance, and robust design . . . it also serves as a valuable reference for researchers and practitioners who wish to study the statistical research associated with robust statistics" (Mathematical Reviews, 2010)
Read More Show Less

Product Details

  • ISBN-13: 9781118210338
  • Publisher: Wiley
  • Publication date: 9/20/2011
  • Series: Wiley Series in Probability and Statistics , #693
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 2
  • Pages: 380
  • File size: 22 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Peter J. Huber, PhD, has over thirty-five years of academic experience and has previously served as professor of statistics at ETH Zurich (Switzerland), Harvard University, Massachusetts Institute of Technology, and the University of Bayreuth (Germany). An established authority in the field of robust statistics, Dr. Huber is the author or coauthor of four books and more than seventy journal articles in the areas of statistics and data analysis.

Elvezio M. Ronchetti, PhD, is Professor of Statistics in the Department of Econometrics at the University of Geneva in Switzerland. Dr. Ronchetti is a Fellow of the American Statistical Association and coauthor of Robust Statistics: The Approach Based on Influence Functions, also published by Wiley.

Read More Show Less

Table of Contents

Preface.

Preface to First Edition.

1. Generalities.

1.1 Why Robust Procedures?

1.2 What Should a Robust Procedure Achieve?

1.3 Qualitative Robustness.

1.4 Quantitative Robustness.

1.5 Infinitesimal Aspects.

1.6 Optimal Robustness.

1.7 Computation of Robust Estimates.

1.8 Limitations to Robustness Theory.

2. The Weak Topology and its Metrization.

2.1 General Remarks.

2.2 The Weak Topology.

2.3 Lévy and Prohorov Metrics.

2.4 The Bounded Lipschitz Metric.

2.5 Fréechet and Gâteaux Derivatives.

2.6 Hampel’s Theorem.

3. The Basic Types of Estimates.

3.1 General Remarks.

3.2 Maximum Likelihood Type Estimates (MEstimates).

3.3 Linear Combinations of Order Statistics (LEstimates).

3.4 Estimates Derived from Rank Tests (REstimates).

3.5 Asymptotically Efficient M, L, and REstimates.

4. Asymptotic Minimax Theory for Estimating Location.

4.1 General Remarks.

4.2 Minimax Bias.

4.3 Minimax Variance: Preliminaries.

4.4 Distributions Minimizing Fisher Information.

4.5 Determination of F0 by Variational Methods.

4.6 Asymptotically Minimax MEstimates.

4.7 On the Minimax Property for Land REstimates.

4.8 Redescending MEstimates.

4.9 Questions of Asymmetric Contamination.

5. Scale Estimates.

5.1 General Remarks.

5.2 MEstimates of Scale.

5.3 LEstimates of Scale.

5.4 REstimates of Scale.

5.5 Asymptotically Efficient Scale Estimates.

5.6 Distributions Minimizing Fisher Information for Scale.

5.7 Minimax Properties.

6. Multiparameter Problems, in Particular Joint Estimation of Location and Scale.

6.1 General Remarks.

6.2 Consistency of MEstimates.

6.3 Asymptotic Normality of MEstimates.

6.4 Simultaneous MEstimates of Location and Scale.

6.5 MEstimates with Preliminary Estimates of Scale.

6.6 Quantitative Robustness of Joint Estimates of Location and Scale.

6.7 The Computation of MEstimates of Scale.

6.8 Studentizing.

7. Regression.

7.1 General Remarks.

7.2 The Classical Linear Least Squares Case.

7.2.1 Residuals and Outliers.

7.3 Robustizing the Least Squares Approach.

7.4 Asymptotics of Robust Regression Estimates.

7.5 Conjectures and Empirical Results.

7.6 Asymptotic Covariances and Their Estimation.

7.7 Concomitant Scale Estimates.

7.8 Computation of Regression MEstimates.

7.9 The Fixed Carrier Case: what size hi?

7.10 Analysis of Variance.

7.11 L1estimates and Median Polish.

7.12 Other Approaches to Robust Regression.

8. Robust Covariance and Correlation Matrices.

8.1 General Remarks.

8.2 Estimation of Matrix Elements Through Robust Variances.

8.3 Estimation of Matrix Elements Through Robust Correlation.

8.4 An Affinely Equivariant Approach.

8.5 Estimates Determined by Implicit Equations.

8.6 Existence and Uniqueness of Solutions.

8.7 Influence Functions and Qualitative Robustness.

8.8 Consistency and Asymptotic Normality.

8.9 Breakdown Point.

8.10 Least Informative Distributions.

8.11 Some Notes on Computation.

9. Robustness of Design.

9.1 General Remarks.

9.2 Minimax Global Fit.

9.3 Minimax Slope.

10. Exact Finite Sample Results.

10.1 General Remarks.

10.2 Lower and Upper Probabilities and Capacities.

10.3 Robust Tests.

10.4 Sequential Tests.

10.5 The NeymanPearson Lemma for 2Alternating Capacities.

10.6 Estimates Derived From Tests.

10.7 Minimax Interval Estimates.

11. Finite Sample Breakdown Point.

11.1 General Remarks.

11.2 Definition and Examples.

11.3 Infinitesimal Robustness and Breakdown.

11.4 Malicious versus Stochastic Breakdown.

12. Infinitesimal Robustness.

12.1 General Remarks.

12.2 Hampel’s Infinitesimal Approach.

12.3 Shrinking Neighborhoods.

13. Robust Tests.

13.1 General Remarks.

13.2 Local Stability of a Test.

13.3 Tests for General Parametric Models in the Multivariate Case.

13.4 Robust Tests for Regression and Generalized Linear Models.

14. Small Sample Asymptotics.

14.1 General Remarks.

14.2 Saddlepoint Approximation for the Mean.

14.3 Saddlepoint Approximation of the Density of Mestimators.

14.4 Tail Probabilities.

14.5 Marginal Distributions.

14.6 Saddlepoint Test.

14.7 Relationship with Nonparametric Techniques.

15. Bayesian Robustness.

15.1 General Remarks.

15.2 Disparate Data and Problems with the Prior.

15.3 Maximum Likelihood and Bayes Estimates.

15.4 Some Asymptotic Theory.

15.5 Minimax Asymptotic Robustness Aspects.

15.6 Nuisance Parameters.

15.7 Why there is no Finite Sample Bayesian Robustness Theory.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)