Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

1133118646
Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

54.99 In Stock
Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications

Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications

Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications

Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications

Hardcover(2014)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.


Product Details

ISBN-13: 9783319041834
Publisher: Springer International Publishing
Publication date: 03/25/2014
Series: The International Series in Video Computing , #12
Edition description: 2014
Pages: 114
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Introduction.- Background and Literature Review.- Seeing Through Water: Underwater Scene Reconstruction.- Simultaneous Turbulence Mitigation and Moving Object Detection.- Action Recognition by Motion Trajectory Decomposition.- Complex Event Recognition Using Constrained Rank Optimization.- Concluding Remarks.- Extended Derivations for Chapter 4.
From the B&N Reads Blog

Customer Reviews