Rock Mechanics: For Underground Mining


Although Rock Mechanics addresses many of the rock mechanics issues which arise in underground mining engineering, it is not a text exclusively for mining applications. It consists of five categories of topics on the science and practice of rock engineering: basic engineering principles relevant to rock mechanics; mechanical properties of rock and rock masses; design of underground excavations in various rock mass conditions; mining methods and their implementation; and guidelines on rock mechanics practice. ...

See more details below
Paperback (Softcover reprint of the original 1st ed. 1985)
$99.00 price
Other sellers (Paperback)
  • All (8) from $73.66   
  • New (6) from $73.66   
  • Used (2) from $148.55   
Sending request ...


Although Rock Mechanics addresses many of the rock mechanics issues which arise in underground mining engineering, it is not a text exclusively for mining applications. It consists of five categories of topics on the science and practice of rock engineering: basic engineering principles relevant to rock mechanics; mechanical properties of rock and rock masses; design of underground excavations in various rock mass conditions; mining methods and their implementation; and guidelines on rock mechanics practice. Throughout the text, and particularly in those sections concerned with excavation design and design of mining layouts, reference is made to computational methods of analysis of stress and displacement in a rock mass. The principles of various computational schemes, such as boundary element, finite element and distinct element methods, are considered. This new edition has been completely revised to reflect the notable innovations in mining engineering and the remarkable developments in the science of rock mechanics and the practice of rock engineering that have taken place over the last two decades.

Based on extensive professional, research and teaching experience, this book will provide an authoritative and comprehensive text for final year undergraduates and commencing postgraduate students. For professional practitioners, not only will it be of interest to mining and geological engineers but also to civil engineers, structural and mining geologists and geophysicists as a standard work for professional reference purposes.

B.H.G. Brady is Emeritus Professor and former Dean of the Faculty of Engineering, Computing and Mathematics at The University of Western Australia, and a consulting rock mechanics engineer.

E.T. Brown is Senior Consultant, Golder Associates Pty Ltd, Brisbane, Australia and formerly Senior Deputy Vice-Chancellor of The University of Queensland, Australia.

Read More Show Less

Product Details

  • ISBN-13: 9789401165037
  • Publisher: Springer Netherlands
  • Publication date: 12/31/2013
  • Edition description: Softcover reprint of the original 1st ed. 1985
  • Pages: 528
  • Product dimensions: 7.44 (w) x 9.69 (h) x 1.11 (d)

Table of Contents

1 Rock mechanics and mining engineering.- 1.1 General concepts.- 1.2 Inherent complexities in rock mechanics.- 1.3 Underground mining.- 1.4 Functional interactions in mine engineering.- 1.5 Implementation of a rock mechanics programme.- 2 Stress and infinitesimal strain.- 2.1 Problem definition.- 2.2 Force and stress.- 2.3 Stress transformation.- 2.4 Principal stresses and stress invariants.- 2.5 Differential equations of static equilibrium.- 2.6 Plane problems and biaxial stress.- 2.7 Displacement and strain.- 2.8 Principal strains, strain transformation, volumetric strain and deviator strain.- 2.9 Strain compatibility equations.- 2.10 Stress—strain relations.- 2.11 Cylindrical polar co-ordinates.- 2.12 Geomechanics convention for displacement, strain and stress.- 2.13 Graphical representation of biaxial stress.- Problems.- 3 Rock mass structure.- 3.1 Introduction.- 3.2 Major types of structural features.- 3.3 Important geomechanical properties of discontinuities.- 3.4 Collecting structural data.- 3.5 Presentation of structural data.- 3.6 The hemispherical projection.- 3.7 Rock mass classification.- Problems.- 4 Rock strength and deformability.- 4.1 Introduction.- 4.2 Concepts and definitions.- 4.3 Behaviour of isotropic rock material in uniaxial compression.- 4.4 Behaviour of isotropic rock material in multiaxial compression.- 4.5 Strength criteria for isotropic rock material.- 4.6 Strength of anisotropic rock material in triaxial compression.- 4.7 Shear behaviour of discontinuities.- 4.8 Behaviour of discontinuous rock masses.- Problems.- 5 Pre-mining state of stress.- 5.1 Specification of the pre-mining state of stress.- 5.2 Factors influencing the in-situ state of stress.- 5.3 Methods of in-situ stress determination.- 5.4 Presentation of in-situ stress measurement results.- 5.5 Results of in-situ stress measurements.- Problems.- 6 Methods of stress analysis.- 6.1 Predictive methods for mine design.- 6.2 Principles of classical stress analysis.- 6.3 Closed-form solutions for simple excavation shapes.- 6.4 Computational methods of stress analysis.- 6.5 The boundary element method.- 6.6 The finite element method.- 6.7 The distinct element method.- 6.8 Hybrid computational schemes.- 7 Excavation design in massive elastic rock.- 7.1 General design methodology.- 7.2 Zone of influence of an excavation.- 7.3 Effect of planes of weakness on elastic stress distribution.- 7.4 Excavation shape and boundary stresses.- 7.5 Delineation of zones of rock failure.- 7.6 Support and reinforcement of massive rock.- Problems.- 8 Excavation design in stratified rock.- 8.1 Design factors.- 8.2 Rock mass response to mining.- 8.3 Roof bed deformation mechanics.- 8.4 Roof design procedure for plane strain.- 8.5 Roof design for square and rectangular excavations.- 8.6 Improved design procedures.- 9 Excavation design in jointed rock.- 9.1 Design factors.- 9.2 Identification of potential failure modes.- 9.3 Symmetric triangular roof prism.- 9.4 Asymmetric triangular roof prism.- 9.5 Roof stability analysis for a tetrahedral wedge.- 9.6 Pragmatic design in jointed rock.- 10 Energy changes accompanying underground mining.- 10.1 Mechanical relevance of energy changes.- 10.2 Mining consequences of energy changes.- 10.3 Spherical cavity in a hydrostatic stress field.- 10.4 General determination of released energy.- 10.5 Thin tabular excavations.- 10.6 Cut-and-fill stoping.- 11 Rock support and reinforcement.- 11.1 Terminology.- 11.2 Support and reinforcement principles.- 11.3 Rock-support interaction analysis.- 11.4 Pre-reinforcement.- 11.5 Support and reinforcement design.- 11.6 Materials and techniques.- 12 Mining methods and method selection.- 12.1 Mining excavations.- 12.2 Rock mass response to stoping activity.- 12.3 Orebody properties influencing mining method.- 12.4 Underground mining methods.- 12.5 Mining method selection.- 13 Naturally supported mining methods.- 13.1 Components of a supported mine structure.- 13.2 Field observations of pillar performance.- 13.3 Tributary area analysis of pillar support.- 13.4 Design of a stope-and-pillar layout.- 13.5 Bearing capacity of roof and floor rocks.- 13.6 Stope-and-pillar design in irregular orebodies.- 13.7 Global stability of a supported mine structure.- 13.8 Yielding pillars.- Problems.- 14 Artificially supported mining methods.- 14.1 Techniques of artificial support.- 14.2 Backfill properties and placement.- 14.3 Cut-and-fill stoping.- 14.4 Backfill applications in open stoping.- 15 Longwall and caving mining methods.- 15.1 Classification of longwall and caving mining methods.- 15.2 Longwall mining in hard rock.- 15.3 Longwall coal mining.- 15.4 Sublevel caving.- 15.5 Block caving.- Problems.- 16 Mining-induced surface subsidence.- 16.1 Types and effects of mining-induced subsidence.- 16.2 Chimney caving.- 16.3 Sinkholes in carbonate rocks.- 16.4 Discontinuous subsidence associated with caving methods of mining.- 16.5 Continuous subsidence due to the mining of tabular orebodies.- 17 Blasting mechanics.- 17.1 Blasting processes in underground mining.- 17.2 Explosives.- 17.3 Energy transmission in rock.- 17.4 Elastic models of explosive-rock interaction.- 17.5 Phenomenology of rock breakage by explosives.- 17.6 Computational models of blasting.- 17.7 Transient ground motion.- 17.8 Perimeter blasting.- 18 Monitoring rock mass performance.- 18.1 The purposes and nature of monitoring rock mass performance.- 18.2 Monitoring systems.- 18.3 Examples of monitoring rock mass performance.- Appendix 1 Basic constructions using the hemispherical projection.- A1.1 Projection of a line.- A1.2 Projection of the great circle and pole to a plane.- A1.3 Determination of the line of intersection of two planes.- A1.4 Determination of the angle between two lines in a plane.- A1.5 Determination of dip direction and true dip.- A1.6 Rotation about an inclined axis.- Appendix 2 Stresses and displacements induced by point and infinite line loads in an infinite, isotropic, elastic continuum.- A2.1 A point load (the Kelvin equations).- A2.2 An infinite line load.- Appendix 3 Calculation sequences for rock-support interaction analysis.- A3.1 Scope.- A3.2 Required support line calculations.- A3.3 Available support line calculations.- Appendix 4 Limiting equilibrium analysis of progressive hangingwall caving.- A4.1 Derivation of equations.- A4.2 Calculation sequence.- Answers to problems.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)