Gift Guide

Rydberg atoms for quantum information.

More About This Textbook


I examine interactions between ensembles of cold Rydberg atoms, and between Rydberg atoms and an intense, optical standing wave. Because of their strong electrostatic interactions, Rydberg atoms are prime candidates for quantum information and quantum computation. To this end, I study excitation dynamics in many-body Rydberg systems using a rotary echo technique similar to the echo sequences used in nuclear magnetic resonance schemes. In this method, a phase reversal of a narrow-band excitation field is applied at a variable time during the excitation pulse. The visibility of the resulting echo signal reveals the degree of coherence of the excitation process. Rotary echoes are measured for several nD5/2 Rydberg levels of rubidium with principal quantum numbers near n = 43, where the strength of electrostatic Rydberg-atom interactions is sharply modulated by a Forster resonance The Rydberg-atom interactions diminish the echo visibility, in agreement with theoretical work. The equivalence of echo signals with spectroscopic data is also examined.;Applications of Rydberg atoms based on controlled interactions require a trapping device that holds the atoms at well-defined positions several microns apart. Rydberg atoms in ponderomotive optical lattices present a unique platform to meet this requirement, as well as to study properties and interactions of these highly excited atoms. Because the Rydberg electron is so loosely bound, the ponderomotive interaction for a Rydberg electron is very similar to a free electron. Ponderomotive lattices tailored to trap Rydberg atoms will allow new experiments in quantum information physics and high-precision spectroscopy. Microwave spectroscopy is used as a powerful technique to probe the motion and to verify trapping of Rydberg atoms in ponderomotive lattices. The potentials for non-degenerate, low angular momentum states, are used to obtain ensembles of Rydberg-atom trajectories in the lattice, and to simulate the spectra of microwave transitions of Rydberg atoms moving through the lattice. Additionally, adiabatic potentials are calculated for Rydberg atoms in one-dimensional ponderomotive lattices for a variety of atomic states and lattice parameters. The lattice induced mixing of nearly-degenerate, high-angular-momentum states is explained in terms of effective electric and magnetic fields.
Read More Show Less

Product Details

  • BN ID: 2940043402820
  • Publisher: ProQuest LLC
  • Sold by: Barnes & Noble
  • Format: eTextbook
  • Pages: 149

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)