Scaling Limits and Models in Physical Processes / Edition 1

Paperback (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $30.00
Usually ships in 1-2 business days
(Save 39%)
Other sellers (Paperback)
  • All (11) from $30.00   
  • New (8) from $36.14   
  • Used (3) from $30.00   


This is an introductory text, in two parts, on scaling limits and modelling in equations of mathematical physics. The first part is concerned with basic concepts of the kinetic theory of gases which is not only important in its own right but also as a prototype of a mathematical construct central to the theory of non-equilibrium phenomena in large systems. It also features a very readable historic survey of the field. The second part dwells on the role of integrable systems for modelling weakly nonlinear equations which contain the effects of both dispersion and nonlinearity. Starting with a historical introduction to the subject and a description of numerical techniques, it proceeds to a discussion of the derivation of the Korteweg de Vries and nonlinear Schrödinger equations, followed by a careful treatment of the inverse scattering theory for the Schrödinger operator. The book provides an up-to-date and detailed overview to this very active area of research and is intended as an accessible introduction for non-specialists and graduate students in mathematics, physics and engineering.

Read More Show Less

Editorial Reviews

From the Publisher
"...This is an excellent research monograph..."

—Zentralblatt Math

Read More Show Less

Product Details

  • ISBN-13: 9783764359850
  • Publisher: Birkhauser Basel
  • Publication date: 9/1/1998
  • Series: Oberwolfach Seminars Series, #28
  • Edition description: 1998
  • Edition number: 1
  • Pages: 194
  • Product dimensions: 9.21 (w) x 6.14 (h) x 0.43 (d)

Table of Contents

I Scaling and Mathematical Models in Kinetic Theory.- 1 Boltzmann Equation and Gas Surface Interaction.- 1.1 Introduction.- 1.2 The Boltzmann equation.- 1.3 Molecules different from hard spheres.- 1.4 Collision invariants.- 1.5 The Boltzmann inequality and the Maxwell distributions.- 1.6 The macroscopic balance equations.- 1.7 The H-theorem.- 1.8 Equilibrium states and Maxwellian distributions.- 1.9 Model equations.- 1.10 Boundary conditions.- 2 Perturbation Methods for the Boltzmann Equation.- 2.1 Introduction.- 2.2 Rarefaction regimes.- 2.3 Solving the Boltzmann equation. Analytical techniques.- 2.4 Hydrodynamical limit and other scalings.- 2.5 The linearized collision operator.- 2.6 The basic properties of the linearized collision operator.- 2.7 Spectral properties of the Fourier-transformed, linearized Boltzmann equation.- 2.8 The asymptotic behavior of the solution of the Cauchy problem for the linearized Boltzmann equation.- 2.9 A quick survey of the global existence theorems for the nonlinear equation.- 2.10 Hydrodynamical limits. A formal discussion.- 2.11 The Hilbert expansion.- 2.12 The entropy approach to the hydrodynamical limit.- 2.13 The hydrodynamic limit for short times.- 2.14 Other scalings and the incompressible Navier-Stokes equations.- 2.15 Concluding remarks.- II Scaling, Mathematical Modelling, & Integrable Systems.- 1 Dispersion.- 1.1 Introduction.- 1.2 Group and phase velocities.- 2 Nonlinear Schrödinger Equation.- 2.1 Multiple scales expansion.- 2.2 Pulse solutions.- 3 Korteweg-de Vries.- 3.1 Background and history.- 3.2 Plasmas.- 3.3 Water waves.- 3.4 The solitary wave of the KdV equation.- 4 Isospectral Deformations.- 4.1 The KdV hierarchy.- 4.2 The AKNS hierarchy.- 5 Inverse Scattering Theory.- 5.1 The Schrödinger equation.- 5.2 First Order Systems.- 5.3 Decay of the scattering data.- 6 Variational Methods.- 6.1 Water Waves.- 6.2 Method of Averaging.- 7 Weak and Strong Nonlinearities.- 7.1 Breaking and Peaking.- 7.2 Strongly nonlinear models.- 7.3 The extended AKNS hierarchy.- 8 Numerical Methods.- 8.1 The finite Fourier transform.- 8.2 Pseudospectral codes.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)