Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists / Edition 2

Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists / Edition 2

by Joseph Goldstein, Dale E. Newbury, Patrick Echlin, David C. Joy
     
 

ISBN-10: 0306441756

ISBN-13: 9780306441752

Pub. Date: 05/28/1992

Publisher: Springer US

Product Details

ISBN-13:
9780306441752
Publisher:
Springer US
Publication date:
05/28/1992
Edition description:
2nd ed.
Pages:
820
Product dimensions:
(w) x (h) x 0.08(d)

Table of Contents

Introduction
1(20)
Evolution of the Scanning Electron Microscope
2(8)
Evolution of the Electron Probe Microanalyzer
10(7)
Outline of This Book
17(4)
Electron Optics
21(48)
How the SEM Works
21(4)
Functions of the SEM Subsystems
21(3)
Why Learn about Electron Optics?
24(1)
Electron Guns
25(18)
Thermionic Electron Emission
25(1)
Conventional Triode Electron Guns
26(3)
Brightness
29(2)
Tungsten Hairpin Electron Gun
31(4)
Lanthanum Hexaboride (LaB6) Electron Guns
35(3)
Field Emission Electron Guns
38(5)
Electron Lenses
43(14)
Properties of Magnetic Lenses
43(3)
Lenses in SEMs
46(2)
Producing Minimum Spot Size
48(5)
Lens Aberrations
53(4)
Electron Probe Diameter versus Electron Probe Current
57(10)
Calculation of dmin and imax
57(3)
Comparison of Electron Sources
60(5)
Measurement of Microscope Parameters
65(2)
Summary of SEM Microscopy Modes
67(2)
Electron-Specimen Interactions
69(80)
Introduction
69(1)
Electron Scattering
70(9)
Elastic Scattering
71(2)
Inelastic Scattering
73(6)
Interaction Volume
79(11)
Experimental Evidence
79(2)
Monte Carlo Electron-Trajectory Simulation
81(2)
Influence of Beam Energy on Interaction Volume
83(1)
Influence of Atomic Number on Interaction Volume
84(2)
Influence of Specimen Surface Tilt on Interaction Volume
86(1)
Measures of Interaction Volume---Electron Range
87(1)
Bethe Range
88(1)
Kanaya-Okayama Range
89(1)
Range for a Tilted Specimen
89(1)
Comparison of Ranges
89(1)
Range at Low Beam Energy
90(1)
Signals from Elastic Scattering
90(16)
Backscattered Electrons
91(1)
Atomic Number Dependence
92(2)
Beam-Energy Dependence
94(1)
Tilt Dependence
95(2)
Angular Distribution
97(3)
Energy Distribution
100(1)
Lateral Spatial Distribution
101(3)
Sampling Depth of Backscattered Electrons
104(2)
Signals from Inelastic Scattering
106(40)
Secondary Electrons
107(1)
Definition and Origin
107(1)
Energy Distribution
108(1)
Specimen Composition Dependence
108(2)
Beam-Energy Dependence
110(1)
Specimen Tilt Dependence
111(1)
Angular Distribution of Secondary Electrons
112(1)
Range and Escape Depth of Secondary Electrons
113(2)
Relative Contributions of SEI and SEII
115(1)
X-Rays
116(1)
Continuum X-Ray Production
117(2)
Inner-Shell Ionization
119(16)
X-Ray Absorption
135(4)
X-Ray Fluorescence
139(3)
Auger Electrons
142(2)
Cathodoluminescence
144(2)
Specimen Heating
146(1)
Summary
146(3)
Image Formation and Interpretation
149(124)
Introduction
149(1)
The Basic SEM Imaging Process
150(24)
Scanning Action
150(2)
Image Construction (Mapping)
152(1)
Line Scans
153(1)
Image (Area) Scanning
154(2)
Digital Imaging: Collection and Display
156(1)
Magnification
157(2)
Picture Element (Pixel) Size
159(4)
Low-Magnification Operation
163(1)
Depth of Field (Focus)
163(3)
Image Distortions
166(1)
Projection Distortion: Gnomonic Projection
166(1)
Projection Distortion: Image Foreshortening of Tilted Objects
167(3)
Corrections for Tilted Flat Surfaces
170(1)
Scan Distortion: Pathological
170(4)
Moire Effects
174(1)
Detectors
174(15)
Electron Detectors
176(1)
Everhart-Thornley Detector
177(4)
Dedicated Backscattered-Electron Detectors
181(5)
Specimen Current (The Specimen As Detector)
186(2)
Cathodoluminescence Detector
188(1)
Image Contrast at Low Magnification (<10,000x)
189(26)
Contrast
190(1)
Compositional (Atomic Number) Contrast
191(1)
Compositional Contrast with Backscattered Electrons
191(4)
Compositional Contrast with Secondary Electrons
195(2)
Compositional Contrast with Specimen Current
197(1)
Topographic Contrast
198(1)
Origin
198(2)
Topographic Contrast with the Everhart-Thornley Detector
200(3)
Light-Optical Analogy
203(2)
Topographic Contrast with Other Detectors
205(5)
Separation of Contrast Components
210(4)
Other Contrast Mechanisms
214(1)
Image Quality
215(4)
High-Resolution Microscopy: Intermediate (10,000-100,000x) and High Magnification (>100,000x)
219(12)
Electron-Specimen Interactions in High-Resolution Microscopy
220(1)
Backscattered Electrons
220(3)
Secondary Electrons
223(1)
High-Resolution Imaging at High Voltage
224(2)
High-Resolution Imaging at Low Voltage
226(1)
Resolution Improvements: The Secondary-Electron Signal
227(2)
Image Interpretation at High Resolution
229(2)
Image Processing for the Display of Contrast Information
231(16)
The Visibility Problem
232(1)
Analog Signal Processing
233(1)
Display of Weak Contrast (Differential Amplification)
234(3)
Enhancement of a Selected Contrast Range (Gamma Processing)
237(1)
Enhancement of Selected Spatial Frequencies (Derivative Processing)
238(4)
Signal Mixing
242(1)
Contrast Reversal
243(1)
Y-Modulation
243(1)
Digital Image Processing
244(1)
Real Time Digital Imaging
244(1)
Off-Line Digital Image Processing
245(1)
Digital Imaging for Minimum-Dose Microscopy
246(1)
Defects of the SEM Imaging Process
247(8)
Contamination
247(2)
Charging
249(4)
Incipient Charging
253(1)
Severe Charging
254(1)
Special Topics in SEM Imaging
255(15)
SEM at Elevated Pressures (Environmental SEM)
255(1)
The Vacuum Environment
255(1)
Detectors for Elevated-Pressure Microscopy
256(1)
Contrast in Elevated-Pressure Microscopy
257(1)
Resolution
258(1)
Benefits of SEM at Elevated Pressures
258(2)
Stereo Microscopy
260(1)
Qualitative Stereo Microscopy
260(3)
Quantitative Stereo Microscopy
263(4)
STEM in SEM
267(3)
Developing a Comprehensive Imaging Strategy
270(3)
X-Ray Spectral Measurement: WDS and EDS
273(68)
Introduction
273(1)
Wavelength-Dispersive Spectrometer
273(19)
Basic Design
273(7)
The X-Ray Detector
280(3)
Detector Electronics
283(9)
Energy-Dispersive X-Ray Spectrometer
292(39)
Operating Principles
292(4)
The Detection Process
296(1)
Charge-to-Voltage Conversion
297(1)
Pulse-Shaping Linear Amplifier and Pileup Rejection Circuitry
298(6)
The Computer X-Ray Analyzer
304(6)
Artifacts of the Detection Process
310(1)
Peak Broadening
310(3)
Peak Distortion
313(2)
Silicon X-Ray Escape Peaks
315(1)
Absorption Edges
316(3)
Internal Fluorescence Peak of Silicon
319(1)
Artifacts from the Detector Environment
319(1)
Microphony
320(1)
Ground Loops
321(2)
Ice-Oil Accumulation
323(2)
Sensitivity to Stray Radiation
325(5)
Summary of EDS Operation and Artifacts
330(1)
Comparison of WDS and EDS
331(6)
Geometrical Collection Efficiency
331(1)
Quantum Efficiency
332(1)
Resolution
332(2)
Spectral Acceptance Range
334(1)
Maximum Count Rate
334(1)
Minimum Probe Size
334(2)
Speed of Analysis
336(1)
Spectral Artifacts
336(1)
Appendix: Initial Detector Setup and Testing
337(4)
Qualitative X-Ray Analysis
341(24)
Introduction
341(2)
EDS Qualitative Analysis
343(14)
X-Ray Lines
343(5)
Guidelines for EDS Qualitative Analysis
348(1)
General Guidelines for EDS Qualitative Analysis
348(1)
Specific Guidelines for EDS Qualitative Analysis
349(4)
Pathological Overlaps in EDS Qualitative Analysis
353(2)
Examples of EDS Qualitative Analysis
355(2)
WDS Qualitative Analysis
357(6)
Measurement of X-Ray Lines
357(4)
Guidelines for WDS Qualitative Analysis
361(2)
Automatic Qualitative EDS Analysis
363(2)
X-Ray Peak and Background Measurements
365(30)
General Considerations for X-Ray Data Handling
365(1)
Background Correction
366(11)
Background Correction for EDS
366(2)
Background Modeling
368(5)
Background Filtering
373(3)
Background Correction for WDS
376(1)
Interpolation
376(1)
Substitute Material Method
377(1)
Peak Overlap Correction
377(18)
EDS Peak Overlap Correction
377(2)
Linearity
379(1)
Goodness of Fit
380(1)
The Linear Methods
381(2)
The Nonlinear Methods
383(3)
Error Estimation
386(5)
WDS Peak-Overlap Correction
391(4)
Quantitative X-Ray Analysis: The Basics
395(22)
Introduction
395(1)
Advantages of Quantitative X-Ray Microanalysis in the SEM/EPMA
396(1)
Quantitative Analysis Procedures
397(2)
The Approach to X-Ray Quantitation: The Need for Matrix Corrections
399(1)
The Physical Origin of Matrix Effects
400(1)
X-Ray Production
401(4)
Effect of Atomic Number
401(2)
X-Ray Generation with Depth, φs;(pz)
403(2)
ZAF Factors in Microanalysis
405(8)
Atomic Number Effect
405(2)
X-Ray Absorption Effect
407(5)
X-Ray Fluorescence
412(1)
Types of Matrix Correction Schemes
413(2)
Caveats
415(2)
Quantitative X-Ray Analysis: Theory and Practice
417(108)
Introduction
417(1)
ZAF Technique
417(19)
Introduction
417(2)
The Atomic Number Correction Z
419(5)
The Absorption Correction A
424(1)
Formulation
424(1)
Expressions for f(x)
425(1)
Practical Considerations
426(1)
Calculations of the Absorption Factor A
427(2)
The Characteristic Fluorescence Correction F
429(3)
The Continuum Fluorescence Correction
432(2)
Summary Discussion of the ZAF Method
434(2)
φs;(pz) Technique
436(17)
Introduction
436(1)
The φs;(pz) Curves
437(1)
Definition
437(2)
Measurement of φs;(pz) Curves
439(1)
Calculation of φs;(pz) Curves
440(3)
Atomic Number Correction Zi
443(2)
Absorption Correction Ai
445(3)
Summary Discussion of the φs;(pz) Method
448(5)
Quantitative Analysis with Nonnormal Electron-Beam Incidence
453(3)
Standardless Analysis
456(4)
The Biological or Polymer Specimen: Special Procedures
460(6)
The Characteristic Signal
461(1)
The Continuum Signal
462(1)
Derivation of the Hall Procedure in Terms of X-Ray Cross-Sections
463(2)
Error Analysis
465(1)
Bulk Targets and Analysis of a Minor Element
465(1)
Special Procedures for Geological Analysis
466(5)
Introduction
466(1)
Formulation of the Bence-Albee Procedure
467(1)
Application of Bence-Albee Procedure
468(2)
Specimen Conductivity
470(1)
Special Sample Analysis
471(22)
Introduction: The Analytical Total
471(1)
Films on Substrates
472(4)
Foils
476(3)
Particles and Rough Surfaces
479(1)
Mass Effect
479(1)
Absorption Effect
480(6)
Fluorescence Effect
486(1)
Compensating for Geometric Effects in Quantitative Analysis
486(7)
Precision and Sensitivity in X-Ray Analysis
493(10)
Statistical Basis for Calculating Precision and Sensitivity
493(3)
Sample Homogeneity
496(1)
Analytical Sensitivity
497(2)
Trace-Element Analysis
499(3)
Variance under Peak Overlap Conditions in the EDS
502(1)
Light-Element Analysis
503(17)
Introduction
503(1)
Operating Conditions for Light-Element Analysis
504(1)
X-Ray Spectrometers
505(1)
WDS
505(4)
EDS
509(1)
Chemical Bonding Shifts
510(1)
WDS
510(2)
EDS
512(1)
Standards for Light-Element Analysis
513(1)
Surface Contamination
514(2)
Measurement of Background Intensities
516(1)
WDS
516(1)
EDS
517(1)
Quantitation Procedures for the Light Elements
517(3)
Appendix 9.1. Equations for the α, β, γ, and φs;(0) Terms of the Packwood-Brown φs;(pz) Equation
520(2)
Appendix 9.2. Solution for the Atomic Number and Absorption Corrections
522(3)
Compositional Imaging
525(22)
Introduction
525(1)
Analog X-Ray Area Scanning (Dot Mapping)
526(9)
Procedure
526(3)
Limitations and Artifacts
529(6)
Digital Compositional Mapping
535(12)
Principles
535(1)
Data Collection
536(1)
Dead-time Correction
536(1)
Defocusing or Decollimation Correction
536(1)
Background Correction
537(1)
Standardization (k-Value)
538(1)
Matrix Correction
538(1)
Combined EDS-WDS Strategy
538(1)
Statistics in Compositional Mapping
539(1)
Advantages
539(8)
Specimen Preparation for Inorganic Materials: Microstructural and Microchemical Analysis
547(24)
Metals
547(9)
Specimen Preparation for Surface Topography
549(1)
Specimen Preparation for Microstructural and Microchemical Analysis
550(1)
Final Specimen Preparation for Microstructural Analysis
550(2)
Final Specimen Preparation for Microchemical Analysis
552(2)
Preparation of Standards for X-Ray Microanalysis
554(2)
Ceramics and Geological Specimens
556(1)
Initial Specimen Preparation
556(1)
Mounting
556(1)
Polishing
557(1)
Final Specimen Preparation
557(1)
Electronic Devices and Packages
557(3)
Initial Specimen Preparation
558(1)
Mounting
559(1)
Polishing
560(1)
Final Preparation
560(1)
Semiconductors
560(2)
Voltage Contrast
560(1)
Charge Collection
561(1)
Electron Channeling
562(1)
Sands, Soils, and Clays
562(2)
Particles and Fibers
564(7)
Particle Substrates
565(1)
Bulk Substrates
565(1)
Thin-Foil Substrate
566(1)
Transfer and Attachment of Particles to Substrates
566(1)
Abundant, Loose Particles
567(1)
Particle Transfer from a Filter
568(1)
Particles in a Solid Matrix
568(1)
Transfer of Individual Particles
569(2)
Sample Preparation for Biological, Organic, Polymeric, and Hydrated Materials
571(100)
Introduction
571(1)
Compromising the Electron-Beam Instrument
572(2)
Environmental Stages
572(1)
Environmental Microscopes
572(1)
Nonoptimal Microscope Performance
573(1)
Compromising the Sample
574(2)
Correlative Microscopy
576(1)
Techniques for Structural Studies
576(35)
Specimen Selection
578(1)
Specimen Cleaning
579(3)
Specimen Stabilization
582(3)
Specimen Dehydration
585(1)
Chemical Dehydration
585(5)
Critical-Point Drying
590(2)
Low-Temperature Drying
592(2)
Ambient-Temperature Sublimation
594(1)
Exposure of Internal Surfaces
594(2)
Sectioning
596(3)
Fracturing
599(5)
Replication
604(2)
Surface Etching
606(1)
Specimen Supports
606(3)
High-Resolution Scanning Microscopy
609(1)
Isolation of Object of Interest
609(2)
Stabilization and Conductive Staining
611(1)
Specimen Coating
611(1)
Specimen Preparation for Localization of Metabolic Activity and Chemical Specificity
611(24)
Introduction
611(1)
The Nature of the Problem
612(1)
The Form of the Substance Being Analyzed
612(1)
Precision of Analytical Investigation
612(2)
Types of Specimens
614(2)
Types of Instrumentation
616(1)
Types of Analytical Applications
616(1)
General Preparative Procedures
617(1)
Before Fixation
617(1)
Fixation
617(2)
Histochemical Techniques
619(1)
Precipitation Techniques
620(1)
Dehydration
621(1)
Embedding
622(1)
Sectioning and Fracturing
623(1)
Specimen Supports
623(1)
Specimen Staining
624(1)
Localizing Regions of Biological Activity and Chemical Specificity
624(1)
Backscattered-Electron Cytochemical Methods
624(4)
Radioactive Labelling Methods
628(1)
Immunocytochemical Methods
629(4)
Criteria for Satisfactory Specimen Preparation
633(2)
Preparative Procedures for Organic Samples Such as Polymers, Plastics, and Paints
635(9)
Introduction
635(1)
Examination of the Surface of Polymers and Fibers
635(1)
Examination of the Interior of Polymers and Fibers
635(1)
Sectioning
636(1)
Polished Cut Surfaces
636(1)
Peelback Procedure
637(1)
Fracturing
638(1)
Replicas
639(1)
Surface Etching of Polymers
639(1)
High-Energy Beam Bombardment
640(1)
Argon Ion-Beam Etching
640(1)
Oxygen Plasma Etching
640(1)
Chemical Dissolution
640(1)
Chemical Attack
641(1)
Enzymatic Digestion
641(1)
Staining of Polymers and Plastics
641(1)
Osmium Tetroxide
641(1)
Chlorosulphonic Acid
641(1)
Phosphotungstic Acid
642(1)
Ruthenium Tetroxide
642(1)
Silver Salts
642(1)
Specialized Preparative Methods
643(1)
Low-Temperature Specimen Preparation for Structural and Analytical Studies
644(14)
Introduction
644(1)
Water: Properties
645(1)
Ice
646(1)
Rapid Cooling Procedures
647(2)
Cryosectioning
649(1)
Cryofracturing
649(2)
Freeze Drying
651(1)
Freeze Substitution and Low-Temperature Embedding
652(2)
Low-Temperature SEM
654(1)
Low-Temperature X-Ray Microanalysis
654(4)
Damage, Artifact, and Interpretation
658(11)
Introduction
658(1)
Sample Damage during Preparation
658(1)
Specimen Damage during Examination and Analysis
659(1)
Observable Damage
659(3)
Nonobservable Damage
662(6)
Artifacts
668(1)
Interpretation
669(1)
Specific Preparative Procedures: A Bibliography
669(2)
Coating and Conductivity Techniques for SEM and Microanalysis
671(70)
Introduction
671(1)
Specimen Characteristics
672(3)
Conductivity
672(1)
Thermal Damage
672(2)
Secondary- and Backscattered-Electron Emission
674(1)
X-Ray and Cathodoluminescence Emission
674(1)
Mechanical Stability
675(1)
Untreated Specimens
675(3)
Bulk Conductivity Staining Methods
678(6)
Specimen Mounting Procedures
684(1)
Thin-Film Methods
685(1)
Thermal Evaporation
686(15)
High-Vacuum Evaporation
688(4)
The Apparatus
692(2)
Choice of Evaporant
694(2)
Evaporation Techniques
696(4)
Artifacts Associated with Evaporative Coating
700(1)
Low-Vaccum Evaporation
701(1)
Sputter Coating
701(19)
Diode or Direct-Current Sputtering
703(2)
Plasma-Magnetron Sputtering
705(2)
Ion-Beam Sputtering
707(4)
Penning Sputtering
711(4)
Sputtering Techniques
715(1)
Choice of Target Material
716(1)
Coating Thickness
716(1)
Advantages of Sputter Coating
717(2)
Artifacts Associated with Sputter Coating
719(1)
Specialized Coating Methods
720(12)
High-Resolution Coating
720(3)
Coating Samples Maintained at Low Specimen Temperatures
723(3)
Coating Frozen-Hydrated Material Maintained at Low Temperatures
726(3)
Coating Techniques for X-Ray Microanalysis
729(3)
Determination of Coating Thickness
732(5)
Estimation of Coating Thickness
732(1)
Measurement during Coating
733(2)
Measurement after Coating
735(1)
Removing Coating Layers
736(1)
Artifacts Related to Coating and Bulk-Conductivity Procedures
737(2)
Conclusions
739(2)
Data Base
741(46)
Atomic Number, Atomic Weight, and Density of Elements
741(2)
Common Oxides of the Elements
743(1)
Mass Absorption Coefficients for Kα Lines
744(8)
Mass Absorption Coefficients for Lα Lines
752(16)
Mass Absorption Coefficients for Mα Lines
768(10)
K Series X-Ray Wavelengths and Energies
778(2)
L Series X-Ray Wavelengths and Energies
780(1)
M Series X-Ray Wavelengths and Energies
781(1)
J and Fluorescent Yield (ω) by Atomic Number
782(2)
Important Properties of Selected Coating Elements
784(3)
References 787(20)
Index 807

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >