Scheduling in Computer and Manufacturing Systems
A theoretical and application-oriented analysis of deterministic scheduling problems arising in computer and manufacturing environments. The important classical results are surveyed with particular attention paid to single-processor scheduling, along with general models such as resource-constrained scheduling, flexible flow shops, dynamic job shops, and special flexible manufacturing systems. Polynomial and exponential-time optimization algorithms as well as approximation and heuristic ones are presented using a Pascal-like notation, before being discussed in the light of particular problems. Basic concepts from scheduling theory and related fields are described to assist less advanced readers.
1117339475
Scheduling in Computer and Manufacturing Systems
A theoretical and application-oriented analysis of deterministic scheduling problems arising in computer and manufacturing environments. The important classical results are surveyed with particular attention paid to single-processor scheduling, along with general models such as resource-constrained scheduling, flexible flow shops, dynamic job shops, and special flexible manufacturing systems. Polynomial and exponential-time optimization algorithms as well as approximation and heuristic ones are presented using a Pascal-like notation, before being discussed in the light of particular problems. Basic concepts from scheduling theory and related fields are described to assist less advanced readers.
109.99 In Stock
Scheduling in Computer and Manufacturing Systems

Scheduling in Computer and Manufacturing Systems

Scheduling in Computer and Manufacturing Systems

Scheduling in Computer and Manufacturing Systems

Paperback(2nd ed. 1994. Softcover reprint of the original 2nd ed. 1994)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

A theoretical and application-oriented analysis of deterministic scheduling problems arising in computer and manufacturing environments. The important classical results are surveyed with particular attention paid to single-processor scheduling, along with general models such as resource-constrained scheduling, flexible flow shops, dynamic job shops, and special flexible manufacturing systems. Polynomial and exponential-time optimization algorithms as well as approximation and heuristic ones are presented using a Pascal-like notation, before being discussed in the light of particular problems. Basic concepts from scheduling theory and related fields are described to assist less advanced readers.

Product Details

ISBN-13: 9783642790362
Publisher: Springer Berlin Heidelberg
Publication date: 12/13/2011
Edition description: 2nd ed. 1994. Softcover reprint of the original 2nd ed. 1994
Pages: 312
Product dimensions: 6.69(w) x 9.61(h) x 0.03(d)

Table of Contents

1 Introduction.- References.- 2 Preliminaries.- 2.1 Sets and Relations.- 2.2 Problems, Algorithms, Complexity.- 2.2.1 Problems and their Encoding.- 2.2.2 Algorithms.- 2.2.3 Complexity.- 2.3 Graphs and Networks.- 2.3.1 Basic Notions.- 2.3.2 Special Classes of Digraphs.- 2.3.3 Networks.- 2.4 Enumerative Methods.- 2.4.1 Dynamic Programming.- 2.4.2 Branch and Bound.- 2.5 Heuristic and Approximation Algorithms.- References.- 3 Formulation of Scheduling Problems.- 3.1 Definition of Scheduling Problems.- 3.2 Analysis of Scheduling Problems and Algorithms.- 3.3 Motivations for Deterministic Scheduling Problems.- 3.4 Classification of Deterministic Scheduling Problems.- References.- 4 Single Processor Scheduling.- 4.1 Minimizing Schedule Length.- 4.1.1 Scheduling with Release Times and Deadlines.- 4.1.2 Scheduling with Release Times and Delivery Times.- 4.2 Minimizing Mean Weighted Flow Time.- 4.3 Minimizing Due Date Involving Criteria.- 4.3.1 Maximum Lateness.- 4.3.2 Number of Tardy Tasks.- 4.3.3 Tardiness Problems.- 4.3.4 Earliness and Lateness Problems.- 4.4 Minimizing Change-Over Cost.- 4.4.1 Setup Scheduling.- 4.4.2 Lot Size Scheduling.- 4.5 Other Criteria.- 4.5.1 Minimizing Maximum Cost.- 4.5.2 Minimizing Mean Cost.- References.- 5 Parallel Processor Scheduling.- 5.1 Minimizing Schedule Length.- 5.1.1 Identical Processors.- 5.1.2 Uniform and Unrelated Processors.- 5.2 Minimizing Mean Row Time.- 5.2.1 Identical Processors.- 5.2.2 Uniform and Unrelated Processors.- 5.3 Minimizing Due Date Involving Criteria.- 5.3.1 Identical Processors.- 5.3.2 Uniform and Unrelated Processors.- 5.4 Other Models.- 5.4.1 Semi-Identical Processors.- 5.4.2 Scheduling Multiprocessor Tasks.- References.- 6 Static Shop Scheduling.- 6.1 Flow Shop Scheduling.- 6.2 Open Shop Scheduling.- 6.3 Job Shop Scheduling.- 6.3.1 Basic Ideas.- 6.3.2 Branch and Bound Algorithm.- 6.3.3 Simulated Annealing.- 6.3.4 Computational Results.- References.- 7 Resource Constrained Scheduling.- 7.1 Classical Model.- 7.2 Scheduling Multiprocessor Tasks.- 7.3 Scheduling with Continuous Resources.- 7.3.1 Introductory Remarks.- 7.3.2 Processing Speed vs. Resource Amount Model.- 7.3.3 Processing Time vs. Resource Amount Model.- 7.3.4 Ready Time vs. Resource Amount Model.- References.- 8 Scheduling in Flexible Manufacturing Systems.- 8.1 Introductory Remarks.- 8.2 Scheduling Flexible Flow Shops.- 8.2.1 Problem Formulation.- 8.2.2 Heuristics and their Performance.- 8.2.3 Branch and Bound Algorithm.- 8.3 Scheduling Dynamic Job Shops.- 8.3.1 Introductory Remarks.- 8.3.2 Heuristic Algorithm for the Static Problem.- 8.3.3 Computational Experiments.- 8.4 Simultaneous Scheduling and Routing in some FMS.- 8.4.1 Problem Formulation.- 8.4.2 Vehicle Scheduling for a Fixed Production Schedule.- 8.4.3 Simultaneous Job and Vehicle Scheduling.- References.- 9 From Theory to Practice.- 9.1 Scheduling in Computer Integrated Manufacturing.- 9.2 Solution Approaches Based on Artificial Intelligence.- 9.2.1 Interactive Scheduling.- 9.2.2 Knowledge-Based Systems.- 9.3 Integration of Knowledge and Algorithms.- 9.3.1 Intelligent Production Scheduling.- 9.3.2 Integrated Problem Solving.- References.
From the B&N Reads Blog

Customer Reviews