BN.com Gift Guide

Science, Truth, and Democracy / Edition 1

Paperback (Print)
Rent
Rent from BN.com
$9.33
(Save 78%)
Est. Return Date: 02/17/2015
Used and New from Other Sellers
Used and New from Other Sellers
from $14.00
Usually ships in 1-2 business days
(Save 66%)
Other sellers (Paperback)
  • All (7) from $14.00   
  • New (3) from $41.59   
  • Used (4) from $14.00   

Overview

Striving to boldly redirect the philosophy of science, this book by renowned philosopher Philip Kitcher examines the heated debate surrounding the role of science in shaping our lives. Kitcher explores the sharp divide between those who believe that the pursuit of scientific knowledge is always valuable and necessary--the purists--and those who believe that it invariably serves the interests of people in positions of power. In a daring turn, he rejects both perspectives, working out a more realistic image of the sciences--one that allows for the possibility of scientific truth, but nonetheless permits social consensus to determine which avenues to investigate. He then proposes a democratic and deliberative framework for responsible scientists to follow.

Controversial, powerful, yet engaging, this volume will appeal to a wide range of readers. Kitcher's nuanced analysis and authorititative conclusion will interest countless scientists as well as all readers of science--scholars and laypersons alike.

Read More Show Less

Editorial Reviews

From the Publisher
"In Science, Truth, and Democracy, this philosopher of science at Columbia University revises and builds on his earlier account to debunk what he refers to as the theology of science-the idea that science is a high calling dedicated to ends that transcend all others-and to oppose the demonization of science...thought-provoking." — Lewis Wolpert, Science

"Science, Truth, and Democracy is an outstandingly good book; it flashes with the steel of reason."—New York Times Book Review

"Mr Kitcher holds that the democratic way of doing this is better than any alternative....But could it, he asks, serve us better? Does it ignore opportunities for the advancement of knowledge and the betterment of humankind? Yes, he suggests, on both counts. Thanks to [Kitcher, et. al.], such questions are being asked again in a serious and responsible way. Science can only be richer and healthier for it."—The Economist

"Philip Kitcher's Science, Truth and Democracy joins generosity to argument. Throughout, Kitcher remains engaged with reason as he tries to understand, critically, the positions of realists, creationists, empiricists, and constructivists."—Peter Galison, Harvard University

"Kitcher's navigates very skillfully between the extremes of positivistic science-worship and Foucauldian distrust of 'regimes of truth'. His novel and plausible answer to the question 'Why seek scientific truth?' will help bring the increasingly tedious Science Wars to a close. His argument that we need what he calls 'well-ordered science' is an important contribution to political thought."—Richard Rorty, Brandeis University

"Kitcher is one of the leading figures in contemporary philosophy of science, and [this book] expounds some significant developments in his general view of the sciences, as well as original treatments of some fundamentally important and increasingly topical issues...it will certainly be widely read and discussed by philosophers of science and a good number of scientists and other students of scientists."—John Dupré, University of Exeter

Read More Show Less

Product Details

  • ISBN-13: 9780195165524
  • Publisher: Oxford University Press, USA
  • Publication date: 9/25/2003
  • Series: Oxford Studies in the Philosophy of Science Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 240
  • Sales rank: 794,813
  • Product dimensions: 9.10 (w) x 6.00 (h) x 0.90 (d)

Meet the Author

Philip Kitcher is Professor of Philosophy at Columbia University and author of The Nature of Mathematical Knowledge (OUP, 1983); The Advancement of Science (OUP, 1993); and In Mendel's Mirror (OUP, 2003).

Read More Show Less

Read an Excerpt



Chapter One


Unacceptable Images


What is the role of the sciences in a democratic society? Some people, let us call them the "scientific faithful," say this: "The sciences represent the apogee of human achievement. Since the seventeenth century, they have disclosed important truths about the natural world, and those truths have replaced old prejudices and superstitions. They have enlightened us, creating conditions under which people can lead more satisfying lives, becoming more fully rational and more fully human. The proper role of the sciences today is to continue this process, by engaging in free inquiry and by resisting attempts to hobble investigations for the sake of any moral, political, or religious agenda."

    The faithful do not believe that scientific research is completely free of moral constraints. They would agree that investigators must be honest in the presentation of their findings, and they would concede that some methods of inquiry cannot be tolerated. Mindful of the appalling activities undertaken by the Nazi doctors and of the Tuskegee syphilis study (in which black men were left untreated "for the sake of science"), they recognize that the conduct of experiments cannot override human rights—or, perhaps, even the rights of some animals. However great the intellectual benefits of disentangling the roles of nature and nurture in human development, it would be morally monstrous to breed "pure lines" of children and rear them in carefully calibrated environments. So when it is claimed thatinquiry must be free, what seems to be intended is that moral, political, and religious judgments should not enter into two important contexts of decision: the formulation of projects for scientific inquiry and the appraisal of evidence for conclusions. The questions investigators address should not be limited by the ideals and the fears that happen to be prevalent in human societies. Nor should we deceive ourselves by believing what we find comfortable when that belief would be undermined by available evidence. Sapere aude remains our proper motto.

    Others think differently. On their account, the vision just sketched is a myth. Would-be debunkers believe that it is very much in the interests of those who are currently in power in affluent societies to cultivate the idea of a pure science that stands free of moral, political, and religious values, and that the myth serves as a tactic for excluding viewpoints that the powerful would like to marginalize. The minimal criticism is that decisions about which inquiries are to be pursued are always made by invoking judgments of value. Many would add to this the suggestion that there is no objective notion of "the evidence" that decisions about which "scientific conclusions" to accept are always made on the basis of moral, political, and religious values. A more extreme critique would argue that the idea that the sciences deliver to us truths about nature is another part of the myth. In the end, institutionalized science comes to seem like an effective propaganda machine, serving the interests of the elite classes and imposing its doctrines, ideals, and products on the marginalized masses in much the way that politico-religious institutions of the past managed so successfully. Science (with a capital "S") is the heir of the Catholic Church and the Party.

    Neither of these images is acceptable. Each contains elements that can be used in crafting a more adequate vision. My aim is to articulate that vision. In rejecting both the image of the scientific community as secular priesthood and its polar opposite, I offer a conception of the scientist as artisan, as a worker capable of offering to the broader community something of genuine value, whose contributions can be, and should be, responsive to a much wider range of concerns than are usually taken to be appropriate. That, of course, is only a sketch. The plausibility of the full picture will depend on the details.


Let us begin again, more concretely. There are several places at which contemporary scientific research inspires reflective people to ponder the value of lines of inquiry that are proposed and to invoke one of the images I have characterized as unacceptable. Without any suggestion that all the nuances of complex debates will be captured, it will be worth reviewing a few examples.

    Consider first the Human Genome Project. Governments throughout the affluent world, but most particularly in the United States, have contributed large sums of money so that researchers will map and sequence the genome of our species (or, more exactly, a bundle of segments of DNA drawn from a small number of human beings) and the genomes of certain carefully selected other organisms. Public defense of the project often emphasizes the medical benefits that will flow from the expansion of detailed knowledge about human genes. Privately, policy-makers and politicians who favor the project talk more frequently of the economic benefits of engaging in it, the advantages of building or maintaining a lead in biotechnology, while scientific researchers, away from the microphones and cameras, point out the ways in which a huge archive of sequence data will help the "basic biology" of the new century. All this is readily comprehensible. For the economic consequences and the consequences for biological research are far more definite than the nebulous payoffs for human health.

    It is already clear from cases in which we have achieved molecular insights about the causes of disease that there may be no obvious way to apply those insights in treating, curing, preventing, or ameliorating the malady in question. The molecular details underlying sickle-cell anemia have been known for half a century without yielding any successful strategies for tackling this disease. Yet there are stories of small advances. Thanks to our ability to identify alleles implicated in cystic fibrosis, it is now possible to diagnose children more quickly and to use techniques that reduce the frequency and intensity of the crises to which those who have the disease are subject. So long as one emphasizes improvements in diagnostic testing and partial gains in coping with some diseases, it is quite reasonable to claim that the genomes project (as it would more aptly be called) can bring some medical benefits. Furthermore, as we look into the future, enhanced understanding of basic biology may bring, several decades or a century hence, significant breakthroughs in the treatment or prevention of diseases that cause suffering and premature death for millions. It would be unwise either to rule out that possibility or to stake the (research) farm on it.

    Unfortunately, as should by now be abundantly obvious, the explosion of genetic knowledge will have immediate consequences of a much darker kind. Within a decade, biotechnology companies will be offering hundreds, if not thousands, of predictive genetic tests. Given the character of the practice of medicine in much of the affluent world, it is highly likely that a significant number of people will confront information that is psychologically devastating, or be excluded from a job on genetic grounds, or be denied insurance through genetic discrimination, or face an acute dilemma about continuing a pregnancy. These consequences have been amply discussed by knowledgeable and well-meaning people, and, in all cases except the last, the solutions, in principle, to the problems are not too hard to find. Nevertheless, over a decade after the genomes project began, virtually nothing has been done to alleviate readily foreseeable harms. That fact is especially noteworthy, given the decision, made at the beginning of the project, to undertake a thorough exploration of its ethical, legal, and social consequences. In the United States that commitment was expressed in setting aside a small percentage of the (very large) funds expended on the project, and many of the suggestions for avoiding the difficulties of the new age of genetic testing come from research that has been supported in this way.

    Turn to a second example. At about the same time that molecular biologists were persuading the U.S. Congress to fund the genomes project, an extremely prestigious group of physicists failed in their attempt to obtain public money to build the superconducting supercollider. In this case, the character of the public defense coincided with the private justifications given by the scientists involved. The request for a sum an order of magnitude larger than that expended on mapping and sequencing genomes was to build a facility in which minute constituents of matter could be smashed into one another at velocities considerably greater than those ever previously achieved, in the hope of discovering a rare and evanescent product of the collisions. Some politicians were probably swayed by the thought that their local constituents would benefit from jobs created by the project, but, for the majority, the decision turned on whether a considerable sum of public money should be spent in the hope of confirming and developing an esoteric theory about the ultimate constituents of matter. Physicists were eloquent in explaining how the facility they proposed was needed to continue probing the character of fundamental particles, how their planned investigations extended a line of inquiry that had given rise, successively, to the atomic theory, to conceptions of atoms as composed of elementary particles (electrons, protons, neutrons), to the discovery of quarks and the partial unification of accounts of the basic physical forces, but those who held the purse-strings were eventually unmoved by dreams of a final theory, perhaps viewing the accelerator as an expensive plaything that would generate nothing outsiders could appreciate or understand. They judged other demands to be more urgent.

    In other instances, a line of proposed scientific research may be evaluated not as insufficiently beneficial but as genuinely harmful. For at least a century, the general public has been periodically informed that careful biological investigations have revealed unpleasant truths about the natural differences among members of particular groups. Inequalities in performance with respect to tasks that are socially valued have been unmasked as the result of unmodifiable characteristics, and, more or less regretfully, the investigators and those who have popularized their findings have maintained that any policy of eradicating inequalities is doomed to failure. No matter how hard we may try, there are limits to our power to boost I.Q. or to make the upper echelons of the professions available to groups that have been historically disadvantaged (people with two X chromosomes or with a tendency to produce melanin in their skin cells). In many instances, those who champion this kind of research claim that the problems they are addressing are too important to ignore, and that an enlightened social policy must be based on an awareness of the fixed obstacles that block paths we would like to take. When these defenses are challenged, the advocates can fall back on the importance of knowledge in general, and of self-knowledge in particular, independent of any practical consequences. Their opponents sometimes argue that research of so sensitive a kind must be held to stringent standards of evidence, and that socially consequential claims should not be accepted on what they see as the flimsy reasoning being offered. More fundamentally, they may draw from the dismal history of efforts to trace a biological basis for social inequality the conclusion that we have good reason to believe the appropriate standards of evidence to be simply unattainable. Taking an even more radical step, they may suggest that, even if true, these are not matters about which we should want to gain knowledge. The proposals for more research on differences due to sex, race, or class thus face the charge that the envisaged inquiries are morally suspect.

    The long sequence of investigations to which I have just alluded gives rise to moral debate because the acceptance of some scientific doctrines would affect the lives of people in very obvious ways. My final example steps away from the mundane consequences, the everyday shocks that types of human beings are differentially heir to. A commonplace about the growth of the sciences is that, at various times, a new proposal has profoundly disturbed reflective people, causing them to re-evaluate, and even abandon, some of the central beliefs that have given shape and significance to their lives. The impact of Darwin's ideas on human aspirations and self-conceptions is reflected in his first disclosure of his theory to his close friend Joseph Dalton Hooker: "It is like confessing a murder," he wrote (and he meant it). Even today, of course, people continue to resist the claim that there is overwhelming evidence that Darwin was right about the history of life, and their struggles with his doctrines often take the form of conjuring a conspiracy against religion and suggesting that this is a place in which science has been distorted by prejudice. Ironically, the conception of Darwinism itself as a religion masquerading as science is not far from some academic suggestions that all science is permeated by prejudices and social values, concretely expressed in the example of evolutionary theory by claiming that we should understand Darwin's triumph not in terms of his evidence and sound arguments but in his ability to resonate the values of competitive, Victorian, bourgeois capitalism.


The scientific faithful have familiar ways of responding to the issues posed by the examples I have offered. Consider, first, the genomes project. The beginning of wisdom, the faithful will insist, is to distinguish sharply between science and technology. There are scientific findings about the relative positions of genetic loci on chromosomes and about the structures of the alleles at those loci, and there are technological applications of those findings within agriculture, medicine, criminology, and other social ventures. Science proposes, society disposes. On one forthright conception of the proper role of the sciences, although we may appraise the moral status of technological ventures, the scientific research itself is entirely neutral. So resolute a stance might provoke doubts once it is recognized that there are extreme cases in which it appears that any application of a piece of research, within the kinds of societies we can plausibly envisage, would prove destructive: consider, for example, research that reveals how cooking just the right combination of broccoli, bananas, and bluefish (or other readily obtainable ingredients) would generate an explosion that would make Hiroshima and Nagasaki appear as damp squibs. When the only consequences of applying a scientific result are so clear, and so clearly awful, then even the faithful may allow that there is a moral imperative to desist. Yet this, they are likely to suggest, is truly an extreme case. For virtually all scientific research, the consequences are unpredictable and the harms and benefits of technological applications incalculable. In such circumstances the value of the knowledge, for its own sake and for the sake of future developments to which it may lead, should prove decisive. So, in the particular instance of the genomes project, we cannot say in advance what the balance of good and bad results will be. Scientists act responsibly in gaining deeper biological knowledge and in deferring to others the problem of making the best use of what they find.

    An extension of the same line of argument portrays the decision not to fund the superconducting supercollider as myopic. The value of a scientific inquiry cannot be identified just by considering the set of technological applications to which it gives rise. To discover the Higgs vector boson (the elusive particle that the apparatus was designed to hunt) would be to take a further step in the great intellectual adventure of uncovering the structure of matter. Independently of any practical spinoffs from the experiments, achieving a clearer picture of the fundamental constituents of the universe would be worthwhile for its own sake, just as it is valuable for us to know the major characteristics of our galaxy, the processes that formed our planet, and the history of life on earth. Not only do such cognitive accomplishments vastly outweigh the kinds of pragmatic concerns that figure in budgetary decisions, but they often point in unexpected ways toward future lines of scientific research that will ultimately bequeath to our descendants a vastly wider range of practical options. As the faithful like to emphasize, the history of science is full of examples in which work that initially appeared to lack any practical value proved to be crucial for subsequent developments that spawned a host of welcome technological applications: abstract approaches to computation gave birth to the word processor and the internet; breeding experiments on fruit flies eventually yielded medical genetics; and so it goes. The decision against the supercollider both ignored the intrinsic benefit of the knowledge it would bring and forgot the historical lesson that the pursuit of fundamental science brings long-term dividends.

    Elaborating the argument still further, the faithful approach my third and fourth examples. They recognize that, in the short term, the articulation of unpleasant scientific truths may cause pain and suffering, and may even affect most those who have been victims of discrimination in the past. It is important, they will agree, to do whatever can be done to ensure that findings about human nature are translated into social policy in ways that are sensitive to the needs of the disadvantaged. Yet to produce an enlightened social policy we require the clearest possible account of human beings and their needs. As in other scientific cases, there is an intrinsic benefit from arriving at knowledge—perhaps an especially rich benefit when the subject is ourselves—but here there is also the practical gain of an ability to design social institutions that does not go astray because of illusory hopes. Much as we might like to believe particular things, we gain from knowing the truth about ourselves and from putting our knowledge to work.

    My final example encourages a development of the theme. Even when there is no practical benefit from applying our new self-knowledge in social policies and even when the knowledge may deprive us of comforting illusions, we are still better for having it. Human beings participate in a common enterprise of fathoming nature, and that enterprise is one of the chief glories of our species. Or, to put the point differently, to shun knowledge because it might appall us is to betray an important aspect of our humanity.

    In the responses I have put in the mouths of the scientific faithful, we find a number of philosophical theses. The sciences can provide us with knowledge of nature. They have a definite aim, namely to offer knowledge that is as systematic and complete as possible. That knowledge can be used for practical ends, but the moral appraisal of the uses is properly directed at technology and public policy, not at science itself. Besides its practical benefits or harms, the knowledge has intrinsic value, and that value typically overrides mundane practical concerns.

    The most popular recent criticisms of "scientism" focus on the first thesis. In many academic circles, it has become increasingly popular to deny the claims of the sciences to yield knowledge (truth, we are often told, is either unattainable or a notion that is passé). As I shall try to show, this is an unfortunate way to join the debate, for the serious concerns about the credo of the faithful should focus on the subsequent theses. Can we really make sense of the idea that sciences have a single definite aim? Can we draw a morally relevant distinction between science and technology? Can we view the kind of knowledge achieved by the sciences as having overriding value?

    My eventual aim is to address these questions. First, however, we must become clearer about the notions of truth, knowledge, and objectivity. So I begin with them.


Excerpted from SCIENCE, TRUTH, AND DEMOCRACY by Philip Kitcher. Copyright © 2001 by Philip Kitcher. Excerpted by permission. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.


Read More Show Less

Table of Contents

Introduction
Pt. I The Search for Truth
1 Unacceptable Images 3
2 The World as We Find It 11
3 The Ideal of Objectivity 29
4 The World as We Make It 43
5 Mapping Reality 55
6 Scientific Significance 63
Pt. II The Claims of Democracy
7 The Myth of Purity 85
8 Constraints on Free Inquiry 93
9 Oeganizing Inquiry 109
10 Well-Ordered Science 117
11 Elitism, Democracy, and Science Policy 137
12 Subversive Truth and Ideals of Progress 147
13 The Luddites' Laments 167
14 Research in an Imperfect World 181
Afterword 199
Essay on Sources 203
Index 215
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)