Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals
A new experimental method – the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics. 
1133190192
Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals
A new experimental method – the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics. 
99.0 In Stock
Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals

Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals

by Itzik Kapon
Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals

Searching for 2D Superconductivity in La2?xSrxCuO4 Single Crystals

by Itzik Kapon

eBook1st ed. 2019 (1st ed. 2019)

$99.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A new experimental method – the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics. 

Product Details

ISBN-13: 9783030230616
Publisher: Springer-Verlag New York, LLC
Publication date: 07/11/2019
Series: Springer Theses
Sold by: Barnes & Noble
Format: eBook
File size: 16 MB
Note: This product may take a few minutes to download.

Table of Contents

Introduction.- Stiffnessometer, a Magnetic-Field-Free Superconducting Stiffness Meter and Its Application.- The Nature of the Phase Transition in the Cuprates as Revealed by the Stffnessometer.- Opening a Nodal Gap by Fluctuating Spin-Density-Wave in Lightly Doped La2-xSrxCuO4.- Conclusions
From the B&N Reads Blog

Customer Reviews