Selected Papers of Norman Levinson: Volume 2

Paperback (Softcover reprint of the original 1st ed. 1998)
$129.39
BN.com price
(Save 27%)$179.00 List Price
Other sellers (Paperback)
  • All (3) from $119.33   
  • New (3) from $119.33   
Sending request ...

Product Details

  • ISBN-13: 9781461253372
  • Publisher: Birkhauser Verlag
  • Publication date: 7/31/2012
  • Series: Contemporary Mathematicians Series
  • Edition description: Softcover reprint of the original 1st ed. 1998
  • Edition number: 1
  • Pages: 580
  • Product dimensions: 7.00 (w) x 10.00 (h) x 1.17 (d)

Table of Contents

- Volume 2.- VIII. Harmonic and Complex Analysis1.- Commentary on Gap and Density Theorems by Raymond Redheffer.- [L 8] On the Closure of $$\left\{ {{esub{i{\lambda _n}x}}} \right\}$$ (1936).- [L 7] On a Class of Non-Vanishing Functions (1936).- [L 9] On a Problem of Pólya (1936).- [L 10] On Certain Theorems of Pólya and Bernstein (1936).- [L 11] On Non-Harmonic Fourier Series (1936).- [L13] A Theorem Relating Non-Vanishing and Analytic Functions (1938).- [L 14] On the Growth of Analytic Functions (1938).- [L 15] General Gap Tauberian Theorems: I (1938).- [L 17] Restrictions Imposed by Certain Functions on Their Fourier Transforms (1940).- [L 74] Transformation of an Analytic Function of Several Variables to a Canonical Form (1961).- [L 82] Absolute Convergence and the General High Indices Theorem (1964).- [L 107] (with R. M. Redheffer) Schur’s Theorem for Hurwitz Polynomials (1972).- [L 115] On the Szasz-Müntz Theorem (1974).- IX. Shastic Analysis.- Commentary on [L 33], [L 34], [L 69], [L 70] and [L 81] by Mark Pinsky.- [L 33] The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction (1947).- [L 34] A Heuristic Exposition of Wiener’s Mathematical Theory of Prediction and Filtering (1947).- [L 69] Limiting Theorems for Galton-Watson Branching Process (1959).- [L 70] Limiting Theorems for Age-Dependent Branching Process (1960).- [L 81] (with H. P. McKean, Jr.) Weighted Trigonometrical Approximation on R1 with Application to the Germ Field of a Stationary Gaussian Noise (1964).- X. Elementary Number Theory and the Prime Number Theorem.- [L 98] A Motivated Account of an Elementary Proof of the Prime Number Theorem (1969).- [L 109] On the Elementary Character of Wiener’s General Tauberian Theorem (1973).- XI. The Riemann Zeta-Function.- XI. 1 Zeros on the Critical Line.- Commentary on [L 112], [L 113], [L 116], [L 117], [L 118], [L 120], [L 121] by Brian Conrey.- [L 19] On Hardy’s Theorem on Zeros of the Zeta Function (1940).- [L 64] On Closure Problems and the Zeros of the Riemann Zeta Function (1956).- [L 99] Zeros of the Riemann Zeta-Function near the 1-Line (1969).- [L 103] On Theorems of Berlowitz and Berndt (1971).- [L 112] More than One Third of Zeros of Riemann’s Zeta-Function are on— = 1/2 (1974).- [L 113] Zeros of Derivative of Riemann’s—-Function (1974).- Corrigendum (1975).- [L 116] At least One-Third of Zeros of Riemann’s Zeta-Function are on— = 1/2 (1974).- [L 117] Generalization of Recent Method Giving Lower Bound for N0(T) of Riemann’s Zeta-Function (1974).- [L 118] (with H. L. Montgomery) Zeros of the Derivatives of the Riemann Zeta-Function (1974).- [L 120] A Simplification of the Proof that >N0(T) > (1/3)N(T) for Riemann’s Zeta-Function (1975).- [L 121] Deduction of Semi-Optimal Mollifier for Obtaining Lower Bound for >N0(T) of Riemann’s Zeta-Function (1975).- XI.2 Omega Results for the Riemann-Zeta Function.- Commentary on [L 104] by Brian Conrey.- [L 104]?-Theorems for the Riemann-Zeta Function (1972).- XI.3 Other Papers on the Riemann Zeta-Function.- [L 108] Remarks on a Formula of Riemann for his Zeta Function (1973).- [L 111] Asymptotic Formula for the Coordinates of the Zeros of Sections of the Zeta Function,?N (s), near s = 1 (1973).- [L 122] Almost All Roots of—(s) = a Are Arbitrarily Close to— = 1/2 (1975).- [L 123] On the Number of Sign Changes of—(x)—li x (1976).- XII. Miscellaneous Topics.- Commentary on [L 91] by John Nohel and Héctor Sussman.- Commentary on [L 114] by Alladi Ramakrishnan.- [L 12] (with G. H. Hardy), Inequalities Satisfied by a Certain Definite Integral (1937).- [L 79] Generalization of an Inequality of Ky Fan (1964).- [L 83] Generalizations of an Inequality of Hardy.- [L 91] Minimax, Liapunov and “Bang-Bang” (1966).- [L 92] Linear Programming in Complex Space (1966).- [L 93] A Class of Continuous Linear Programming Problems (1966).- [L 114] On Ramakrishnan’s Approach to Relativity (1974).

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)